YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Use official script, Train on libero long , but low accuracy.

base_model: lerobot/smolvla_base datasets: HuggingFaceVLA/libero library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - smolvla - robotics

Model Card for smolvla

SmolVLA is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.

This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.


How to Get Started with the Model

For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:

Train from scratch

lerobot-train \
  --dataset.repo_id=${HF_USER}/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
  --wandb.enable=true

Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.

Evaluate the policy/run inference

lerobot-record \
  --robot.type=so100_follower \
  --dataset.repo_id=<hf_user>/eval_<dataset> \
  --policy.path=<hf_user>/<desired_policy_repo_id> \
  --episodes=10

Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.


Model Details

  • License: apache-2.0
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support