YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Use official script, Train on libero long , but low accuracy.
base_model: lerobot/smolvla_base datasets: HuggingFaceVLA/libero library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - smolvla - robotics
Model Card for smolvla
SmolVLA is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.
How to Get Started with the Model
For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:
Train from scratch
lerobot-train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.
Evaluate the policy/run inference
lerobot-record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.
Model Details
- License: apache-2.0
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support