SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 馃 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'commercial manager',
'gerente de operaciones',
'vice president of finance americas',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 8,408 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 6.2 tokens
- max: 12 tokens
- min: 3 tokens
- mean: 7.75 tokens
- max: 21 tokens
- min: 0.0
- mean: 0.06
- max: 1.0
- Samples:
sentence_0 sentence_1 label strategic planning managersenior brand manager uap southern cone & personal care cdm chile0.0director de planificacionkey account manager tiendas paris0.0gerente generalanalista de cobranza0.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 50multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 50max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.9506 | 500 | 0.0434 |
| 1.9011 | 1000 | 0.0135 |
| 2.8517 | 1500 | 0.0072 |
| 3.8023 | 2000 | 0.0056 |
| 4.7529 | 2500 | 0.0044 |
| 5.7034 | 3000 | 0.0038 |
| 6.6540 | 3500 | 0.0034 |
| 7.6046 | 4000 | 0.0032 |
| 8.5551 | 4500 | 0.0029 |
| 9.5057 | 5000 | 0.0028 |
| 10.4563 | 5500 | 0.0026 |
| 11.4068 | 6000 | 0.0025 |
| 12.3574 | 6500 | 0.0026 |
| 13.3080 | 7000 | 0.0023 |
| 14.2586 | 7500 | 0.0023 |
| 15.2091 | 8000 | 0.0023 |
| 16.1597 | 8500 | 0.0022 |
| 17.1103 | 9000 | 0.0021 |
| 18.0608 | 9500 | 0.0019 |
| 19.0114 | 10000 | 0.0021 |
| 19.9620 | 10500 | 0.0019 |
| 20.9125 | 11000 | 0.0019 |
| 21.8631 | 11500 | 0.0016 |
| 22.8137 | 12000 | 0.0018 |
| 23.7643 | 12500 | 0.0018 |
| 24.7148 | 13000 | 0.0018 |
| 25.6654 | 13500 | 0.0016 |
| 26.6160 | 14000 | 0.0017 |
| 27.5665 | 14500 | 0.0016 |
| 28.5171 | 15000 | 0.0016 |
| 29.4677 | 15500 | 0.0016 |
| 30.4183 | 16000 | 0.0016 |
| 31.3688 | 16500 | 0.0019 |
| 32.3194 | 17000 | 0.0018 |
| 33.2700 | 17500 | 0.0017 |
| 34.2205 | 18000 | 0.0016 |
| 35.1711 | 18500 | 0.0016 |
| 36.1217 | 19000 | 0.0016 |
| 37.0722 | 19500 | 0.0015 |
| 38.0228 | 20000 | 0.0012 |
| 38.9734 | 20500 | 0.0015 |
| 39.9240 | 21000 | 0.0015 |
| 40.8745 | 21500 | 0.0013 |
| 41.8251 | 22000 | 0.0014 |
| 42.7757 | 22500 | 0.0014 |
| 43.7262 | 23000 | 0.0014 |
| 44.6768 | 23500 | 0.0013 |
| 45.6274 | 24000 | 0.0012 |
| 46.5779 | 24500 | 0.0014 |
| 47.5285 | 25000 | 0.0012 |
| 48.4791 | 25500 | 0.0013 |
| 49.4297 | 26000 | 0.0013 |
Framework Versions
- Python: 3.8.5
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1