fasttext-quality-score

This model is a fine-tuned version of intfloat/multilingual-e5-base on an transferred from English. It achieves the following results on the evaluation set:

  • Loss: 0.1726
  • Precision: 0.7268
  • Recall: 0.6680
  • F1 Macro: 0.6791
  • Accuracy: 0.7465

Model description

This model measure the coherence of the given text, as defined by similarity to ELI5 texts from Reddit.

Intended uses & limitations

Data filtering and evaluation of pretraining data at scale.

Training and evaluation data

Take a look at https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/fasttext_classifier.py

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 0.2774 0.3331 0.5 0.3998 0.6662
0.1863 0.7895 300 0.1846 0.7007 0.6493 0.6580 0.7295
0.1804 1.5789 600 0.1883 0.6808 0.6817 0.6812 0.7157
0.1804 2.3684 900 0.1785 0.7175 0.6490 0.6581 0.7364
0.1781 3.1579 1200 0.1774 0.7201 0.6597 0.6700 0.7410
0.1765 3.9474 1500 0.1795 0.6990 0.6816 0.6878 0.7336
0.174 4.7368 1800 0.1768 0.7214 0.6531 0.6628 0.7393
0.1777 5.5263 2100 0.1838 0.6943 0.6920 0.6931 0.7286
0.1758 6.3158 2400 0.1950 0.7731 0.6021 0.5918 0.7266
0.1749 7.1053 2700 0.1753 0.7147 0.6729 0.6830 0.7423
0.1733 7.8947 3000 0.1748 0.7304 0.6525 0.6621 0.7422
0.1696 8.6842 3300 0.1758 0.7125 0.6767 0.6863 0.7420
0.1723 9.4737 3600 0.1743 0.7243 0.6627 0.6734 0.7437
0.1705 10.2632 3900 0.1740 0.7261 0.6601 0.6706 0.7435
0.1682 11.0526 4200 0.1756 0.7316 0.6481 0.6569 0.7408
0.171 11.8421 4500 0.1734 0.7242 0.6647 0.6756 0.7444
0.1699 12.6316 4800 0.1748 0.7351 0.6473 0.6560 0.7416
0.1696 13.4211 5100 0.1731 0.7235 0.6723 0.6833 0.7464
0.1705 14.2105 5400 0.1738 0.7322 0.6557 0.6659 0.7441
0.1697 15.0 5700 0.1729 0.7205 0.6681 0.6788 0.7438
0.1686 15.7895 6000 0.1726 0.7227 0.6710 0.6819 0.7457
0.1663 16.5789 6300 0.1726 0.7229 0.6707 0.6816 0.7457
0.1684 17.3684 6600 0.1727 0.7213 0.6709 0.6817 0.7450
0.1667 18.1579 6900 0.1726 0.7224 0.6704 0.6813 0.7454
0.1687 18.9474 7200 0.1726 0.7288 0.6656 0.6767 0.7465
0.1675 19.7368 7500 0.1726 0.7268 0.6680 0.6791 0.7465

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.6.0a0+ecf3bae40a.nv25.01
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
32
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for lapa-llm/fasttext-quality-score

Finetuned
(101)
this model

Dataset used to train lapa-llm/fasttext-quality-score

Space using lapa-llm/fasttext-quality-score 1