gec-score-model
This model is a fine-tuned version of intfloat/multilingual-e5-base on the peterua/OmniGEC-ModelTraining dataset.
Training script is available here: https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/gec_score.py
It achieves the following results on the evaluation set:
- Loss: 0.1941
- Precision: 0.7031
- Recall: 0.7030
- F1 Macro: 0.7030
- Accuracy: 0.7030
Model description
This model outputs a score how grammatical correct is the provided text.
Intended uses & limitations
Pretraining data filtering.
Training and evaluation data
Training script is located here: https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/gec_score.py
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 60
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.2963 | 0.5503 | 0.5013 | 0.3409 | 0.5013 |
| 0.2297 | 7.4074 | 400 | 0.2287 | 0.6545 | 0.6336 | 0.6208 | 0.6336 |
| 0.2051 | 14.8148 | 800 | 0.2041 | 0.6722 | 0.6660 | 0.6630 | 0.6660 |
| 0.1957 | 22.2222 | 1200 | 0.1982 | 0.6889 | 0.6885 | 0.6883 | 0.6885 |
| 0.1939 | 29.6296 | 1600 | 0.1963 | 0.6971 | 0.6964 | 0.6962 | 0.6964 |
| 0.1916 | 37.0370 | 2000 | 0.1946 | 0.7005 | 0.7004 | 0.7004 | 0.7004 |
| 0.1907 | 44.4444 | 2400 | 0.1944 | 0.7018 | 0.7017 | 0.7017 | 0.7017 |
| 0.1888 | 51.8519 | 2800 | 0.1944 | 0.6990 | 0.6984 | 0.6982 | 0.6984 |
| 0.1884 | 59.2593 | 3200 | 0.1941 | 0.7031 | 0.7030 | 0.7030 | 0.7030 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.6.0a0+ecf3bae40a.nv25.01
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 112
Model tree for lapa-llm/gec-score-model
Base model
intfloat/multilingual-e5-base