lindtsey's picture
lindtsey/roberta_emotion_detection_v1
c99dfe1 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: roberta_emotion_detection
    results: []

roberta_emotion_detection

This model is a fine-tuned version of FacebookAI/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1252
  • Exact Match Accuracy: 0.2962
  • F1 Micro: 0.4263
  • F1 Macro: 0.4377

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 96
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Exact Match Accuracy F1 Micro F1 Macro
0.1926 1.0 393 0.1482 0.0339 0.0843 0.0336
0.136 2.0 786 0.1269 0.1808 0.3256 0.2574
0.1202 3.0 1179 0.1205 0.2185 0.3621 0.3371
0.1119 4.0 1572 0.1189 0.2601 0.4065 0.3926
0.1055 5.0 1965 0.1193 0.2801 0.4218 0.4206
0.1003 6.0 2358 0.1200 0.2811 0.4179 0.4180
0.0956 7.0 2751 0.1221 0.2829 0.4206 0.4269
0.0918 8.0 3144 0.1232 0.2929 0.4269 0.4353
0.0886 9.0 3537 0.1246 0.2974 0.4279 0.4397
0.086 10.0 3930 0.1252 0.2962 0.4263 0.4377

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1