ToMMeR-phi-4_L3_R64
ToMMeR is a lightweight probing model extracting emergent mention detection capabilities from early layers representations of any LLM backbone, achieving high Zero Shot recall across a wide set of 13 NER benchmarks.
Checkpoint Details
| Property | Value |
|---|---|
| Base LLM | phi-4 |
| Layer | 3 |
| #Params | 660.5K |
Usage
Installation
Our code can be installed with pip+git, Please visit the repository for more details.
pip install git+https://github.com/VictorMorand/llm2ner.git
Fancy Outputs
import llm2ner
from llm2ner import ToMMeR
tommer = ToMMeR.from_pretrained("llm2ner/ToMMeR-phi-4_L3_R64")
# load Backbone llm, optionnally cut the unused layer to save GPU space.
llm = llm2ner.utils.load_llm( tommer.llm_name, cut_to_layer=tommer.layer,)
tommer.to(llm.device)
text = "Large language models are awesome. While trained on language modeling, they exhibit emergent Zero Shot abilities that make them suitable for a wide range of tasks, including Named Entity Recognition (NER). "
#fancy interactive output
outputs = llm2ner.plotting.demo_inference( text, tommer, llm,
decoding_strategy="threshold", # or "greedy" for flat segmentation
threshold=0.5, # default 50%
show_attn=True,
)
Large
PRED
language
PRED
models
are awesome . While trained on
language
PRED
modeling
, they exhibit
emergent
PRED
abilities
that make them suitable for a wide range of
tasks
PRED
, including
Named
PRED
Entity
Recognition
(
NER
PRED
) .
Raw inference
By default, ToMMeR outputs span probabilities, but we also propose built-in options for decoding entities.
- Inputs:
- tokens (batch, seq): tokens to process,
- model: LLM to extract representation from.
- Outputs: (batch, seq, seq) matrix (masked outside valid spans)
tommer = ToMMeR.from_pretrained("llm2ner/ToMMeR-phi-4_L3_R64")
# load Backbone llm, optionnally cut the unused layer to save GPU space.
llm = llm2ner.utils.load_llm( tommer.llm_name, cut_to_layer=tommer.layer,)
tommer.to(llm.device)
#### Raw Inference
text = ["Large language models are awesome"]
print(f"Input text: {text[0]}")
#tokenize in shape (1, seq_len)
tokens = model.tokenizer(text, return_tensors="pt")["input_ids"].to(device)
# Output raw scores
output = tommer.forward(tokens, model) # (batch_size, seq_len, seq_len)
print(f"Raw Output shape: {output.shape}")
#use given decoding strategy to infer entities
entities = tommer.infer_entities(tokens=tokens, model=model, threshold=0.5, decoding_strategy="greedy")
str_entities = [ model.tokenizer.decode(tokens[0,b:e+1]) for b, e in entities[0]]
print(f"Predicted entities: {str_entities}")
>>> Input text: Large language models are awesome
>>> Raw Output shape: torch.Size([1, 6, 6])
>>> Predicted entities: ['Large language models']
Please visit the repository for more details and a demo notebook.
Evaluation Results
| dataset | precision | recall | f1 | n_samples |
|---|---|---|---|---|
| MultiNERD | 0.2066 | 0.9561 | 0.3398 | 154144 |
| CoNLL 2003 | 0.2633 | 0.7099 | 0.3842 | 16493 |
| CrossNER_politics | 0.2806 | 0.9431 | 0.4325 | 1389 |
| CrossNER_AI | 0.3175 | 0.9097 | 0.4708 | 879 |
| CrossNER_literature | 0.3272 | 0.8795 | 0.477 | 916 |
| CrossNER_science | 0.3236 | 0.9219 | 0.4791 | 1193 |
| CrossNER_music | 0.3523 | 0.9213 | 0.5097 | 945 |
| ncbi | 0.1134 | 0.847 | 0.2 | 3952 |
| FabNER | 0.3049 | 0.6933 | 0.4236 | 13681 |
| WikiNeural | 0.1966 | 0.9325 | 0.3247 | 92672 |
| GENIA_NER | 0.2133 | 0.9306 | 0.347 | 16563 |
| ACE 2005 | 0.2414 | 0.3163 | 0.2738 | 8230 |
| Ontonotes | 0.2448 | 0.6719 | 0.3589 | 42193 |
| Aggregated | 0.2167 | 0.8764 | 0.3475 | 353250 |
| Mean | 0.2604 | 0.8179 | 0.3862 | 353250 |
Citation
If using this model or the approach, please cite the associated paper:
@misc{morand2025tommerefficiententity,
title={ToMMeR -- Efficient Entity Mention Detection from Large Language Models},
author={Victor Morand and Nadi Tomeh and Josiane Mothe and Benjamin Piwowarski},
year={2025},
eprint={2510.19410},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2510.19410},
}
License
Apache-2.0 (see repository for full text).