multilabel-mental-health-classifier-v3-iter5
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0005
- Precision Macro: 1.0
- Recall Macro: 1.0
- F1 Macro: 1.0
- Precision Micro: 1.0
- Recall Micro: 1.0
- F1 Micro: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 764
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro |
|---|---|---|---|---|---|---|---|---|---|
| 0.2023 | 1.0 | 220 | 0.0706 | 0.9857 | 0.9874 | 0.9865 | 0.9881 | 0.9911 | 0.9896 |
| 0.0772 | 2.0 | 440 | 0.0181 | 0.9922 | 0.9963 | 0.9942 | 0.9938 | 0.9973 | 0.9955 |
| 0.0214 | 3.0 | 660 | 0.0099 | 0.9979 | 0.9983 | 0.9981 | 0.9981 | 0.9995 | 0.9988 |
| 0.0161 | 4.0 | 880 | 0.0025 | 0.9981 | 0.9993 | 0.9987 | 0.9992 | 0.9995 | 0.9993 |
| 0.0034 | 5.0 | 1100 | 0.0013 | 1.0 | 0.9999 | 0.9999 | 1.0 | 0.9997 | 0.9999 |
| 0.0024 | 6.0 | 1320 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0012 | 7.0 | 1540 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0009 | 8.0 | 1760 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0007 | 9.0 | 1980 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0006 | 10.0 | 2200 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.4.1
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for lucienbaumgartner/multilabel-mental-health-classifier-v3-iter5
Base model
google-bert/bert-base-uncased