SentenceTransformer based on BAAI/bge-base-en
This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("lzwcv/finetuned-bge-base-en")
sentences = [
'\nName : Apex Innovations Group\nCategory: Business Consulting, Training Services\nDepartment: Executive\nLocation: Sydney, Australia\nAmount: 1575.34\nCard: Leadership Development Program\nTrip Name: unknown\n',
'\nName : CloudFlare Inc.\nCategory: Internet & Network Services, SaaS\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 2000.0\nCard: Annual Cloud Services Budget\nTrip Name: unknown\n',
'\nName : EcoClean Systems\nCategory: Environmental Services, Industrial Equipment Care\nDepartment: Office Administration\nLocation: San Francisco, CA\nAmount: 952.63\nCard: Essential Facility Sustainability\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
| Metric |
Value |
| cosine_accuracy |
0.8371 |
| dot_accuracy |
0.1629 |
| manhattan_accuracy |
0.8281 |
| euclidean_accuracy |
0.8371 |
| max_accuracy |
0.8371 |
Triplet
| Metric |
Value |
| cosine_accuracy |
1.0 |
| dot_accuracy |
0.0 |
| manhattan_accuracy |
0.9714 |
| euclidean_accuracy |
1.0 |
| max_accuracy |
1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 221 training samples
- Columns:
sentence and label
- Approximate statistics based on the first 221 samples:
|
sentence |
label |
| type |
string |
int |
| details |
- min: 33 tokens
- mean: 39.6 tokens
- max: 49 tokens
|
- 0: ~4.52%
- 1: ~4.52%
- 2: ~5.43%
- 3: ~2.26%
- 4: ~2.26%
- 5: ~2.71%
- 6: ~3.17%
- 7: ~3.62%
- 8: ~2.71%
- 9: ~5.43%
- 10: ~2.71%
- 11: ~4.07%
- 12: ~1.81%
- 13: ~4.52%
- 14: ~4.98%
- 15: ~3.62%
- 16: ~4.52%
- 17: ~4.98%
- 18: ~4.52%
- 19: ~2.71%
- 20: ~2.71%
- 21: ~4.52%
- 22: ~3.62%
- 23: ~4.07%
- 24: ~3.17%
- 25: ~4.98%
- 26: ~1.81%
|
- Samples:
| sentence |
label |
Name : Quantifire Insights Category: Predictive Analytics Solutions Department: Marketing Location: Zurich, Switzerland Amount: 1275.58 Card: Customer Engagement Enhancement Trip Name: unknown
|
0 |
Name : ElevateLearning Solutions Category: E-Learning Platforms, Collaborative Software Department: Engineering Location: Toronto, Canada Amount: 1523.89 Card: Dev Team Skill Boosting Initiative Trip Name: unknown
|
1 |
Name : Innovative Patents Co. Category: Intellectual Property Services, Legal Services Department: Legal Location: New York, NY Amount: 3250.0 Card: Patent Acquisition Fund Trip Name: unknown
|
2 |
- Loss:
BatchSemiHardTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 55 evaluation samples
- Columns:
sentence and label
- Approximate statistics based on the first 55 samples:
|
sentence |
label |
| type |
string |
int |
| details |
- min: 32 tokens
- mean: 39.73 tokens
- max: 47 tokens
|
- 0: ~1.82%
- 1: ~5.45%
- 2: ~9.09%
- 3: ~3.64%
- 4: ~5.45%
- 5: ~1.82%
- 6: ~1.82%
- 7: ~5.45%
- 10: ~5.45%
- 11: ~5.45%
- 12: ~3.64%
- 13: ~1.82%
- 14: ~3.64%
- 15: ~3.64%
- 16: ~7.27%
- 17: ~1.82%
- 18: ~5.45%
- 19: ~5.45%
- 20: ~1.82%
- 21: ~1.82%
- 22: ~3.64%
- 23: ~1.82%
- 24: ~7.27%
- 25: ~3.64%
- 26: ~1.82%
|
- Samples:
| sentence |
label |
Name : CyberGuard Provisions Category: Security Software Solutions, Data Protection Services Department: Information Security Location: San Francisco, CA Amount: 879.92 Card: Digital Fortress Action Plan Trip Name: unknown
|
17 |
Name : Sphere Financial Systems Category: Financial Management Services, International Billing Solutions Department: Finance Location: London, United Kingdom Amount: 856.47 Card: Cross-Border Transaction Reconciliation Trip Name: unknown
|
7 |
Name : RBC Category: Transaction Processing, Financial Services Department: Finance Location: Limassol, Cyprus Amount: 843.56 Card: Quarterly Financial Management Trip Name: unknown
|
7 |
- Loss:
BatchSemiHardTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
learning_rate: 2e-05
num_train_epochs: 5
warmup_ratio: 0.1
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
bge-base-en-eval_max_accuracy |
bge-base-en-train_max_accuracy |
| 0 |
0 |
- |
0.8371 |
| 5.0 |
35 |
1.0 |
- |
Framework Versions
- Python: 3.10.0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchSemiHardTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}