SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Which of my investments are projected to generate the most return?',
'[{"get_portfolio(None)": "portfolio"}, {"get_expected_attribute(\'portfolio\',[\'returns\'])": "portfolio"}, {"sort(\'portfolio\',\'returns\',\'desc\')": "portfolio"}]',
'[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'returns\')": "portfolio"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.6644 |
| cosine_accuracy@3 | 0.8288 |
| cosine_accuracy@5 | 0.863 |
| cosine_accuracy@10 | 0.9178 |
| cosine_precision@1 | 0.6644 |
| cosine_precision@3 | 0.2763 |
| cosine_precision@5 | 0.1726 |
| cosine_precision@10 | 0.0918 |
| cosine_recall@1 | 0.0185 |
| cosine_recall@3 | 0.023 |
| cosine_recall@5 | 0.024 |
| cosine_recall@10 | 0.0255 |
| cosine_ndcg@10 | 0.1737 |
| cosine_mrr@10 | 0.748 |
| cosine_map@100 | 0.0209 |
| dot_accuracy@1 | 0.6644 |
| dot_accuracy@3 | 0.8288 |
| dot_accuracy@5 | 0.863 |
| dot_accuracy@10 | 0.9178 |
| dot_precision@1 | 0.6644 |
| dot_precision@3 | 0.2763 |
| dot_precision@5 | 0.1726 |
| dot_precision@10 | 0.0918 |
| dot_recall@1 | 0.0185 |
| dot_recall@3 | 0.023 |
| dot_recall@5 | 0.024 |
| dot_recall@10 | 0.0255 |
| dot_ndcg@10 | 0.1737 |
| dot_mrr@10 | 0.748 |
| dot_map@100 | 0.0209 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 723 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 11.8 tokens
- max: 26 tokens
- min: 24 tokens
- mean: 84.41 tokens
- max: 194 tokens
- Samples:
sentence_0 sentence_1 what is my portfolio 3 year cagr?[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]what is my 1 year rate of return[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]show backtest of my performance this year?[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}] - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 10per_device_eval_batch_size: 10num_train_epochs: 6multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 10per_device_eval_batch_size: 10per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 6max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | cosine_map@100 |
|---|---|---|
| 0.0274 | 2 | 0.0136 |
| 0.0548 | 4 | 0.0137 |
| 0.0822 | 6 | 0.0139 |
| 0.1096 | 8 | 0.0142 |
| 0.1370 | 10 | 0.0145 |
| 0.1644 | 12 | 0.0144 |
| 0.1918 | 14 | 0.0147 |
| 0.2192 | 16 | 0.0151 |
| 0.2466 | 18 | 0.0153 |
| 0.2740 | 20 | 0.0158 |
| 0.3014 | 22 | 0.0165 |
| 0.3288 | 24 | 0.0163 |
| 0.3562 | 26 | 0.0167 |
| 0.3836 | 28 | 0.0171 |
| 0.4110 | 30 | 0.0175 |
| 0.4384 | 32 | 0.0177 |
| 0.4658 | 34 | 0.0180 |
| 0.4932 | 36 | 0.0183 |
| 0.5205 | 38 | 0.0185 |
| 0.5479 | 40 | 0.0186 |
| 0.5753 | 42 | 0.0186 |
| 0.6027 | 44 | 0.0186 |
| 0.6301 | 46 | 0.0186 |
| 0.6575 | 48 | 0.0187 |
| 0.6849 | 50 | 0.0189 |
| 0.7123 | 52 | 0.0190 |
| 0.7397 | 54 | 0.0189 |
| 0.7671 | 56 | 0.0188 |
| 0.7945 | 58 | 0.0189 |
| 0.8219 | 60 | 0.0192 |
| 0.8493 | 62 | 0.0193 |
| 0.8767 | 64 | 0.0194 |
| 0.9041 | 66 | 0.0194 |
| 0.9315 | 68 | 0.0197 |
| 0.9589 | 70 | 0.0200 |
| 0.9863 | 72 | 0.0201 |
| 1.0 | 73 | 0.0202 |
| 1.0137 | 74 | 0.0203 |
| 1.0411 | 76 | 0.0202 |
| 1.0685 | 78 | 0.0203 |
| 1.0959 | 80 | 0.0205 |
| 1.1233 | 82 | 0.0207 |
| 1.1507 | 84 | 0.0207 |
| 1.1781 | 86 | 0.0206 |
| 1.2055 | 88 | 0.0205 |
| 1.2329 | 90 | 0.0205 |
| 1.2603 | 92 | 0.0205 |
| 1.2877 | 94 | 0.0204 |
| 1.3151 | 96 | 0.0204 |
| 1.3425 | 98 | 0.0205 |
| 1.3699 | 100 | 0.0205 |
| 1.3973 | 102 | 0.0205 |
| 1.4247 | 104 | 0.0205 |
| 1.4521 | 106 | 0.0204 |
| 1.4795 | 108 | 0.0205 |
| 1.5068 | 110 | 0.0208 |
| 1.5342 | 112 | 0.0206 |
| 1.5616 | 114 | 0.0205 |
| 1.5890 | 116 | 0.0206 |
| 1.6164 | 118 | 0.0205 |
| 1.6438 | 120 | 0.0205 |
| 1.6712 | 122 | 0.0205 |
| 1.6986 | 124 | 0.0207 |
| 1.7260 | 126 | 0.0207 |
| 1.7534 | 128 | 0.0207 |
| 1.7808 | 130 | 0.0205 |
| 1.8082 | 132 | 0.0206 |
| 1.8356 | 134 | 0.0208 |
| 1.8630 | 136 | 0.0206 |
| 1.8904 | 138 | 0.0206 |
| 1.9178 | 140 | 0.0206 |
| 1.9452 | 142 | 0.0205 |
| 1.9726 | 144 | 0.0206 |
| 2.0 | 146 | 0.0207 |
| 2.0274 | 148 | 0.0209 |
Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Model tree for magnifi/bge-small-en-v1.5-ft-orc-0806
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.664
- Cosine Accuracy@3 on Unknownself-reported0.829
- Cosine Accuracy@5 on Unknownself-reported0.863
- Cosine Accuracy@10 on Unknownself-reported0.918
- Cosine Precision@1 on Unknownself-reported0.664
- Cosine Precision@3 on Unknownself-reported0.276
- Cosine Precision@5 on Unknownself-reported0.173
- Cosine Precision@10 on Unknownself-reported0.092
- Cosine Recall@1 on Unknownself-reported0.018
- Cosine Recall@3 on Unknownself-reported0.023