matthieulel's picture
End of training
811f96f verified
metadata
license: apache-2.0
base_model: facebook/dinov2-base-imagenet1k-1-layer
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: dinov2-base-imagenet1k-1-layer-head-finetuned-galaxy_mnist
    results: []

dinov2-base-imagenet1k-1-layer-head-finetuned-galaxy_mnist

This model is a fine-tuned version of facebook/dinov2-base-imagenet1k-1-layer on the matthieulel/galaxy_mnist dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4438
  • Accuracy: 0.8385
  • Precision: 0.8388
  • Recall: 0.8385
  • F1: 0.8386

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5682 0.99 31 1.4744 0.279 0.3518 0.279 0.2447
1.1895 1.98 62 1.1500 0.5175 0.5367 0.5175 0.5208
0.8876 2.98 93 0.8869 0.673 0.6822 0.673 0.6692
0.7366 4.0 125 0.7267 0.744 0.7472 0.744 0.7433
0.6499 4.99 156 0.6573 0.753 0.7566 0.753 0.7533
0.6147 5.98 187 0.6209 0.7695 0.7760 0.7695 0.7695
0.5911 6.98 218 0.5802 0.7855 0.7869 0.7855 0.7860
0.5489 8.0 250 0.5573 0.799 0.8019 0.799 0.7992
0.5306 8.99 281 0.5318 0.801 0.8005 0.801 0.8004
0.5154 9.98 312 0.5177 0.8095 0.8098 0.8095 0.8096
0.4963 10.98 343 0.5097 0.8155 0.8157 0.8155 0.8149
0.5304 12.0 375 0.4971 0.814 0.8144 0.814 0.8139
0.4779 12.99 406 0.4889 0.817 0.8182 0.817 0.8160
0.4774 13.98 437 0.4822 0.8245 0.8255 0.8245 0.8250
0.4852 14.98 468 0.4772 0.827 0.8290 0.827 0.8272
0.4693 16.0 500 0.4724 0.8285 0.8308 0.8285 0.8290
0.456 16.99 531 0.4636 0.829 0.8294 0.829 0.8289
0.4703 17.98 562 0.4623 0.829 0.8303 0.829 0.8291
0.4715 18.98 593 0.4609 0.8305 0.8329 0.8305 0.8308
0.4775 20.0 625 0.4574 0.835 0.8369 0.835 0.8353
0.4776 20.99 656 0.4531 0.833 0.8338 0.833 0.8332
0.4599 21.98 687 0.4500 0.8325 0.8333 0.8325 0.8325
0.4391 22.98 718 0.4510 0.832 0.8341 0.832 0.8321
0.4537 24.0 750 0.4466 0.835 0.8356 0.835 0.8352
0.4555 24.99 781 0.4451 0.8355 0.8365 0.8355 0.8356
0.4476 25.98 812 0.4438 0.8385 0.8388 0.8385 0.8386
0.4618 26.98 843 0.4440 0.8355 0.8366 0.8355 0.8358
0.4734 28.0 875 0.4432 0.835 0.8362 0.835 0.8352
0.4453 28.99 906 0.4433 0.8365 0.8378 0.8365 0.8367
0.4591 29.76 930 0.4430 0.8365 0.8376 0.8365 0.8367

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1