MeteoLibre Rectified Flow Model

In the folder models_shortcut/:

Model Description

  • Model type: Rectified Flow Diffusion Model
  • Architecture: 3D U-Net with FiLM conditioning
  • Input: Meteorological data patches (12 channels + 1 lightning channels, 3D spatio-temporal)
  • Output: Generated weather forecast data
  • Training data: MeteoLibre meteorological dataset
  • Language(s): Python
  • License: MIT

Training

The model was trained using:

  • Framework: PyTorch with Hugging Face Accelerate
  • Optimizer: Adam (lr=5e-4) OR SOAP
  • Batch size: 64
  • Epochs: 200
  • Precision: Mixed precision (bf16)
  • Distributed training: Multi-GPU support

And there is different video exemple for the inference.

Performance summary for the first wave of shortcut model:

Performance Summary

Model Optimizer Steps sat_mse sat_psnr sat_ssim light_mae light_precision light_recall light_f1 light_iou
RF (Run 1) - 128 0.0952 28.5327 0.8042 0.0221 0.5482 0.6535 0.5950 -
RF (Run 2) - 128 0.1076 27.8870 0.8000 0.0221 0.5157 0.6454 0.5724 -
Baseline Persistence baseline 0.2368 24.5138 0.7266 0.0154 0.6714 0.6665 0.6678 0.1023
Shortcut Adam 16 0.0981 28.3788 0.8106 0.0216 0.6339 0.5192 0.5686 0.0791
Shortcut Adam 64 0.0983 28.3702 0.8114 0.0207 0.6609 0.5304 0.5860 0.0791
Shortcut Adam 128 0.0983 28.3581 0.8112 0.0208 0.6518 0.5208 0.5769 0.0791
Shortcut SOAP 16 0.0601 30.5008 0.8663 0.0156 0.8654 0.6958 0.7710 0.0818
Shortcut SOAP 64 0.0606 30.4786 0.8661 0.0151 0.8658 0.6879 0.7663 0.0818
Shortcut SOAP 128 0.0605 30.4848 0.8660 0.0151 0.8635 0.6886 0.7656 0.0818

Metrics from evaluation on 64x20 elements (satellite and lightning data).

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support