MeteoLibre Rectified Flow Model
In the folder models_shortcut/:
Model Description
- Model type: Rectified Flow Diffusion Model
- Architecture: 3D U-Net with FiLM conditioning
- Input: Meteorological data patches (12 channels + 1 lightning channels, 3D spatio-temporal)
- Output: Generated weather forecast data
- Training data: MeteoLibre meteorological dataset
- Language(s): Python
- License: MIT
Training
The model was trained using:
- Framework: PyTorch with Hugging Face Accelerate
- Optimizer: Adam (lr=5e-4) OR SOAP
- Batch size: 64
- Epochs: 200
- Precision: Mixed precision (bf16)
- Distributed training: Multi-GPU support
And there is different video exemple for the inference.
Performance summary for the first wave of shortcut model:
Performance Summary
| Model | Optimizer | Steps | sat_mse | sat_psnr | sat_ssim | light_mae | light_precision | light_recall | light_f1 | light_iou |
|---|---|---|---|---|---|---|---|---|---|---|
| RF (Run 1) | - | 128 | 0.0952 | 28.5327 | 0.8042 | 0.0221 | 0.5482 | 0.6535 | 0.5950 | - |
| RF (Run 2) | - | 128 | 0.1076 | 27.8870 | 0.8000 | 0.0221 | 0.5157 | 0.6454 | 0.5724 | - |
| Baseline | Persistence | baseline | 0.2368 | 24.5138 | 0.7266 | 0.0154 | 0.6714 | 0.6665 | 0.6678 | 0.1023 |
| Shortcut | Adam | 16 | 0.0981 | 28.3788 | 0.8106 | 0.0216 | 0.6339 | 0.5192 | 0.5686 | 0.0791 |
| Shortcut | Adam | 64 | 0.0983 | 28.3702 | 0.8114 | 0.0207 | 0.6609 | 0.5304 | 0.5860 | 0.0791 |
| Shortcut | Adam | 128 | 0.0983 | 28.3581 | 0.8112 | 0.0208 | 0.6518 | 0.5208 | 0.5769 | 0.0791 |
| Shortcut | SOAP | 16 | 0.0601 | 30.5008 | 0.8663 | 0.0156 | 0.8654 | 0.6958 | 0.7710 | 0.0818 |
| Shortcut | SOAP | 64 | 0.0606 | 30.4786 | 0.8661 | 0.0151 | 0.8658 | 0.6879 | 0.7663 | 0.0818 |
| Shortcut | SOAP | 128 | 0.0605 | 30.4848 | 0.8660 | 0.0151 | 0.8635 | 0.6886 | 0.7656 | 0.0818 |
Metrics from evaluation on 64x20 elements (satellite and lightning data).
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support