MiDashengLM-7B-0804 (BF16)

The bfloat16 (bf16) weights for mispeech/midashenglm-7b-0804-fp32.

Recommended for most general-purpose scenarios, including inference and fine-tuning. It delivers quality comparable to FP32 while being significantly faster on modern GPUs (e.g., A100, H100, RTX 4090). The original fp32 model is only for strict numerical reproduction of benchmark results.

Usage

Load Model

from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer

model_id = "mispeech/midashenglm-7b-0804-fp16"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

Construct Prompt

user_prompt = "Caption the audio."  # You may try any other prompt

messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful language and speech assistant."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "text", "text": user_prompt},
            {
                "type": "audio",
                "path": "/path/to/example.wav",
                # or "url": "https://example.com/example.wav"
                # or "audio": np.random.randn(16000)
            },
        ],
    },
]

Generate Output

import torch

with torch.no_grad():
    model_inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        add_special_tokens=True,
        return_dict=True,
    ).to(device=model.device, dtype=model.dtype)
    generation = model.generate(**model_inputs)
    output = tokenizer.batch_decode(generation, skip_special_tokens=True)  # ["An engine is idling."]

Citation

MiDashengLM is under the Apache License 2.0, and we encourage its use in both research and business applications.

If you find MiDashengLM useful in your research, please consider citing our work:

@techreport{midashenglm7b,
  title      = {MiDashengLM: Efficient Audio Understanding with General Audio Captions},
  author     = {{Horizon Team, MiLM Plus}},
  institution= {Xiaomi Inc.},
  year       = {2025},
  note       = {Contributors: Heinrich Dinkel et al. (listed alphabetically in Appendix B)},
  url        = {https://arxiv.org/abs/2508.03983},
  eprint     = {2508.03983},
}
Downloads last month
325
Safetensors
Model size
8B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mispeech/midashenglm-7b-0804-bf16

Finetuned
(37)
this model

Collection including mispeech/midashenglm-7b-0804-bf16