fine-tuned-DatasetQAS-IDK-MRC-with-indobert-base-uncased-with-ITTL-with-freeze-LR-1e-05
This model is a fine-tuned version of indolem/indobert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0641
- Exact Match: 65.1832
- F1: 70.4300
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
| 6.31 |
0.49 |
36 |
2.5380 |
50.0 |
50.0 |
| 3.7784 |
0.98 |
72 |
1.9420 |
49.8691 |
49.8691 |
| 2.192 |
1.48 |
108 |
1.8160 |
48.8220 |
50.2574 |
| 2.192 |
1.97 |
144 |
1.7327 |
48.8220 |
51.7831 |
| 1.9694 |
2.46 |
180 |
1.6016 |
48.9529 |
53.9425 |
| 1.7482 |
2.95 |
216 |
1.4743 |
54.4503 |
58.8011 |
| 1.5835 |
3.45 |
252 |
1.3414 |
57.4607 |
62.1340 |
| 1.5835 |
3.94 |
288 |
1.2884 |
58.2461 |
63.2663 |
| 1.4053 |
4.44 |
324 |
1.2001 |
60.4712 |
65.7454 |
| 1.2521 |
4.93 |
360 |
1.1738 |
60.7330 |
66.8019 |
| 1.2521 |
5.42 |
396 |
1.1551 |
60.8639 |
66.5188 |
| 1.1668 |
5.91 |
432 |
1.1128 |
63.8743 |
68.7421 |
| 1.097 |
6.41 |
468 |
1.0863 |
63.7435 |
69.1933 |
| 1.0251 |
6.9 |
504 |
1.0843 |
63.0890 |
68.4132 |
| 1.0251 |
7.4 |
540 |
1.0507 |
66.3613 |
71.1898 |
| 1.0031 |
7.89 |
576 |
1.0732 |
63.6126 |
68.7281 |
| 0.9616 |
8.38 |
612 |
1.0689 |
65.0524 |
70.2879 |
| 0.9616 |
8.87 |
648 |
1.0376 |
66.2304 |
71.2857 |
| 0.9322 |
9.37 |
684 |
1.0474 |
65.7068 |
70.7885 |
| 0.9227 |
9.86 |
720 |
1.0641 |
65.1832 |
70.4300 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2