metadata
			language:
  - it
license: mit
tags:
  - generated_from_trainer
datasets:
  - tner/wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
widget:
  - text: 'Ciao, sono Giacomo. Vivo a Milano e lavoro da Armani. '
    example_title: Example 1
  - text: 'Domenica andrò allo stadio con Giovanna a guardare la Fiorentina. '
    example_title: Example 2
base_model: dbmdz/bert-base-italian-cased
model-index:
  - name: bert-italian-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: wiki_neural
          type: wiki_neural
          config: it
          split: validation
          args: it
        metrics:
          - type: precision
            value: 0.9438064759036144
            name: Precision
          - type: recall
            value: 0.954225352112676
            name: Recall
          - type: f1
            value: 0.9489873178118493
            name: F1
          - type: accuracy
            value: 0.9917883014379933
            name: Accuracy
bert-italian-finetuned-ner
This model is a fine-tuned version of dbmdz/bert-base-italian-cased on the wiki_neural dataset. It achieves the following results on the evaluation set:
- Loss: 0.0361
 - Precision: 0.9438
 - Recall: 0.9542
 - F1: 0.9490
 - Accuracy: 0.9918
 
Model description
Token classification for italian language experiment, NER.
Example
from transformers import pipeline
ner_pipeline = pipeline("ner", model="nickprock/bert-italian-finetuned-ner", aggregation_strategy="simple")
text = "La sede storica della Olivetti è ad Ivrea"
output = ner_pipeline(text)
Intended uses & limitations
The model can be used on token classification, in particular NER. It is fine tuned on italian language.
Training and evaluation data
The dataset used is wikiann
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 8
 - eval_batch_size: 8
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - num_epochs: 3
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | 
|---|---|---|---|---|---|---|---|
| 0.0297 | 1.0 | 11050 | 0.0323 | 0.9324 | 0.9420 | 0.9372 | 0.9908 | 
| 0.0173 | 2.0 | 22100 | 0.0324 | 0.9445 | 0.9514 | 0.9479 | 0.9915 | 
| 0.0057 | 3.0 | 33150 | 0.0361 | 0.9438 | 0.9542 | 0.9490 | 0.9918 | 
Framework versions
- Transformers 4.27.3
 - Pytorch 1.13.0
 - Datasets 2.1.0
 - Tokenizers 0.13.2