Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx

The regular Deckard(qx) formula uses embeddings at the same bit as the data stores, in this case 4 bit.

The head and select attention paths are enhanced to 6 bit, and the model is quantized with group size 32(hi).

There is an updated model: Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx that uses embeddings at 6 bit and a base of 5 bit, and should perform slightly better on long context.

Metrics coming soon.

-G

This model Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx was converted to MLX format from cerebras/Qwen3-Coder-REAP-25B-A3B using mlx-lm version 0.28.3.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Downloads last month
407
Safetensors
Model size
25B params
Tensor type
BF16
ยท
U32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nightmedia/Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx

Quantized
(9)
this model