Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx
The regular Deckard(qx) formula uses embeddings at the same bit as the data stores, in this case 4 bit.
The head and select attention paths are enhanced to 6 bit, and the model is quantized with group size 32(hi).
There is an updated model: Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx that uses embeddings at 6 bit and a base of 5 bit, and should perform slightly better on long context.
Metrics coming soon.
-G
This model Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx was converted to MLX format from cerebras/Qwen3-Coder-REAP-25B-A3B using mlx-lm version 0.28.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 407
Model tree for nightmedia/Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx
Base model
Qwen/Qwen3-Coder-30B-A3B-Instruct
Finetuned
cerebras/Qwen3-Coder-REAP-25B-A3B