bert_base_nsmc
This model is a fine-tuned version of klue/bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0293
- Train Accuracy: 0.9913
- Validation Loss: 0.5569
- Validation Accuracy: 0.8738
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
- training_precision: float32
Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|---|---|---|---|---|
| 0.4015 | 0.8126 | 0.3148 | 0.8612 | 0 |
| 0.2160 | 0.9153 | 0.3304 | 0.8650 | 1 |
| 0.1038 | 0.9647 | 0.3696 | 0.8708 | 2 |
| 0.0495 | 0.9847 | 0.5254 | 0.8668 | 3 |
| 0.0293 | 0.9913 | 0.5569 | 0.8738 | 4 |
Framework versions
- Transformers 4.57.1
- TensorFlow 2.19.0
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 21
Model tree for ohminsang/bert_base_nsmc
Base model
klue/bert-base