roberta-detector-v2
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0271
- Accuracy: 0.9942
- Precision: 0.9943
- Recall: 0.9942
- F1: 0.9942
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.0226 | 1.0 | 5997 | 0.0339 | 0.9925 | 0.9925 | 0.9925 | 0.9925 |
| 0.0208 | 2.0 | 11994 | 0.0271 | 0.9942 | 0.9943 | 0.9942 | 0.9942 |
| 0.0097 | 3.0 | 17991 | 0.0392 | 0.9936 | 0.9937 | 0.9936 | 0.9936 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 4
Model tree for okemdad/roberta-detector-v2
Base model
FacebookAI/roberta-base