✨ Any prior in → 3D world out ✨ Mix camera, intrinsics, depth as priors ✨ Predict point clouds, normals, Gaussians & more in one pass ✨ Unified architecture for all 3D task
deepseek-ai/DeepSeek-OCR is out! 🔥 my take ⤵️ > pretty insane it can parse and re-render charts in HTML > it uses CLIP and SAM features concatenated, so better grounding > very efficient per vision tokens/performance ratio > covers 100 languages
✨ Trained on Honey-Data-15M, a 15M-sample SFT corpus with dual-level CoT reasoning ✨ Backed by HoneyPipe, a transparent & reproducible open data curation suite
🌎 AI ethics and sustainability are two sides of the same coin.
In our new blog post with Dr. Sasha Luccioni, we argue that separating them (as is too often the case) means missing the bigger picture of how AI systems impact both people and the planet.
Ethical and sustainable AI development can’t be pursued in isolation. The same choices that affect who benefits or is harmed by AI systems also determine how much energy and resources they consume.
We explore how two key concepts, evaluation and transparency, can serve as bridges between these domains:
📊 Evaluation, by moving beyond accuracy or performance metrics to include environmental and social costs, as we’ve done with tools like the AI Energy Score.
🔍 Transparency, by enabling reproducibility, accountability, and environmental reporting through open tools like the Environmental Transparency Space.
AI systems mirror our priorities. If we separate ethics from sustainability, we risk building technologies that are efficient but unjust, or fair but unsustainable.
✨1T total / 50B active params per token ✨20T+ reasoning-dense tokens (Evo-CoT) ✨128K context via YaRN ✨FP8 training: 15%+ faster, same precision as BF16 ✨Hybrid Syntax-Function-Aesthetics reward for front-end & visual generation