SentenceTransformer based on projecte-aina/roberta-base-ca-v2
This is a sentence-transformers model finetuned from projecte-aina/roberta-base-ca-v2 on the projecte-aina/sts-ca dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
 - Base model: projecte-aina/roberta-base-ca-v2
 - Maximum Sequence Length: 512 tokens
 - Output Dimensionality: 768 tokens
 - Similarity Function: Cosine Similarity
 - Training Dataset:
 - Language: ca
 
Model Sources
- Documentation: Sentence Transformers Documentation
 - Repository: Sentence Transformers on GitHub
 - Hugging Face: Sentence Transformers on Hugging Face
 
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pauhidalgoo/finetuned-sts-roberta-base-ca-v2")
# Run inference
sentences = [
    'Però que hi ha de cert en tot això?',
    'Però, què hi ha de veritat en tot això?',
    'Els camioners dissolen la marxa lenta a les rondes de Barcelona',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with 
EmbeddingSimilarityEvaluator 
| Metric | Value | 
|---|---|
| pearson_cosine | 0.935 | 
| spearman_cosine | 0.9899 | 
| pearson_manhattan | 0.9363 | 
| spearman_manhattan | 0.9687 | 
| pearson_euclidean | 0.9377 | 
| spearman_euclidean | 0.9702 | 
| pearson_dot | 0.9163 | 
| spearman_dot | 0.9364 | 
| pearson_max | 0.9377 | 
| spearman_max | 0.9899 | 
Semantic Similarity
- Evaluated with 
EmbeddingSimilarityEvaluator 
| Metric | Value | 
|---|---|
| pearson_cosine | 0.7185 | 
| spearman_cosine | 0.7312 | 
| pearson_manhattan | 0.6843 | 
| spearman_manhattan | 0.6722 | 
| pearson_euclidean | 0.6853 | 
| spearman_euclidean | 0.6732 | 
| pearson_dot | 0.5914 | 
| spearman_dot | 0.6075 | 
| pearson_max | 0.7185 | 
| spearman_max | 0.7312 | 
Semantic Similarity
- Evaluated with 
EmbeddingSimilarityEvaluator 
| Metric | Value | 
|---|---|
| pearson_cosine | 0.7429 | 
| spearman_cosine | 0.7714 | 
| pearson_manhattan | 0.7146 | 
| spearman_manhattan | 0.7267 | 
| pearson_euclidean | 0.7136 | 
| spearman_euclidean | 0.7269 | 
| pearson_dot | 0.6409 | 
| spearman_dot | 0.6428 | 
| pearson_max | 0.7429 | 
| spearman_max | 0.7714 | 
Training Details
Training Dataset
projecte-aina/sts-ca
- Dataset: projecte-aina/sts-ca
 - Size: 2,073 training samples
 - Columns: 
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 7 tokens
 - mean: 22.3 tokens
 - max: 63 tokens
 
- min: 7 tokens
 - mean: 21.07 tokens
 - max: 51 tokens
 
- min: 0.0
 - mean: 2.56
 - max: 5.0
 
 - Samples:
sentence1 sentence2 label Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència UniversitàriaCreen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària3.5Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts.Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més.1.25El TC suspèn el pla d'acció exterior i de relacions amb la UE de la GeneralitatEl Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE3.6700000762939453 - Loss: 
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } 
Evaluation Dataset
projecte-aina/sts-ca
- Dataset: projecte-aina/sts-ca
 - Size: 500 evaluation samples
 - Columns: 
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 8 tokens
 - mean: 22.81 tokens
 - max: 60 tokens
 
- min: 9 tokens
 - mean: 21.94 tokens
 - max: 65 tokens
 
- min: 0.0
 - mean: 2.58
 - max: 5.0
 
 - Samples:
sentence1 sentence2 label L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudesLa morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes1.6699999570846558Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i CialisL'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis2.0Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'EsquadraEs tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos3.0 - Loss: 
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } 
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05weight_decay: 0.01num_train_epochs: 25warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 25max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | spearman_cosine | 
|---|---|---|---|
| 3.8462 | 500 | 4.3798 | - | 
| 7.6923 | 1000 | 3.6486 | - | 
| 11.5385 | 1500 | 3.2479 | - | 
| 15.3846 | 2000 | 2.9539 | - | 
| 19.2308 | 2500 | 2.6753 | - | 
| 23.0769 | 3000 | 2.4955 | - | 
| 25.0 | 3250 | - | 0.7714 | 
Framework Versions
- Python: 3.10.12
 - Sentence Transformers: 3.0.0
 - Transformers: 4.41.1
 - PyTorch: 2.3.0+cu121
 - Accelerate: 0.30.1
 - Datasets: 2.19.2
 - Tokenizers: 0.19.1
 
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
- Downloads last month
 - 2
 
Model tree for pauhidalgoo/finetuned-sts-roberta-base-ca-v2
Base model
projecte-aina/roberta-base-ca-v2Evaluation results
- Pearson Cosine on Unknownself-reported0.935
 - Spearman Cosine on Unknownself-reported0.990
 - Pearson Manhattan on Unknownself-reported0.936
 - Spearman Manhattan on Unknownself-reported0.969
 - Pearson Euclidean on Unknownself-reported0.938
 - Spearman Euclidean on Unknownself-reported0.970
 - Pearson Dot on Unknownself-reported0.916
 - Spearman Dot on Unknownself-reported0.936
 - Pearson Max on Unknownself-reported0.938
 - Spearman Max on Unknownself-reported0.990