YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
scELMo Gene Embeddings
This directory contains gene embeddings generated using scELMo methodology.
Source
These embeddings are converted from the official scELMo repository: https://github.com/HelloWorldLTY/scELMo
Model Information
- Model: genepT-ncbi
- Embedding Dimension: 1536
- Type: gene
- Aggregation Mode: wa
- API Model: text-embedding-ada-002
Files
gene_embeddings.pkl: Gene embeddings dictionary in PerturbLab format- Format:
{'embeddings': {gene_name: embedding_array}, 'gene_list': [gene_names]}
- Format:
config.json: Model configuration
Usage
from perturblab.model.scelmo import scELMoModel
# Load model
model = scELMoModel.from_pretrained('scelmo-gene-ncbi')
# Use embeddings
embeddings = model.predict_embeddings(adata, aggregation_mode='wa')
Citation
If you use these embeddings, please cite the original scELMo paper:
@article{liu2023scelmo,
title={scELMo: Embeddings from Language Models are Good Learners for Single-cell Data Analysis},
author={Liu, Tianyu and Chen, Tianqi and Zheng, Wangjie and Luo, Xiao and Zhao, Hongyu},
journal={Cell Patterns (in press)},
pages={2023--12},
year={2025},
publisher={Cell Press}
}
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support