Disaster Classification Approach Exp
					Collection
				
siglip2 base
					β’ 
				2 items
				β’ 
				Updated
					
				
Flood-Image-Detection is a vision-language encoder model fine-tuned from
google/siglip2-base-patch16-512for binary image classification. It is trained to detect whether an image contains a flooded scene or non-flooded environment. The model uses theSiglipForImageClassificationarchitecture.
SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features : https://arxiv.org/pdf/2502.14786
Classification Report:
               precision    recall  f1-score   support
Flooded Scene     0.9172    0.9458    0.9313       609
  Non Flooded     0.9744    0.9603    0.9673      1309
     accuracy                         0.9557      1918
    macro avg     0.9458    0.9530    0.9493      1918
 weighted avg     0.9562    0.9557    0.9559      1918
Class 0: Flooded Scene  
Class 1: Non Flooded
pip install -q transformers torch pillow gradio hf_xet
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/flood-image-detection"  # Update with actual model name on Hugging Face
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Updated label mapping
id2label = {
    "0": "Flooded Scene",
    "1": "Non Flooded"
}
def classify_image(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
    prediction = {
        id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
    }
    return prediction
# Gradio Interface
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=2, label="Flood Detection"),
    title="Flood-Image-Detection",
    description="Upload an image to detect whether the scene is flooded or not."
)
if __name__ == "__main__":
    iface.launch()
Flood-Image-Detection is designed for:
Base model
google/siglip2-base-patch16-512