General / Caption Abliteration
Collection
Qwen2.5-VL and Qwen3-VL
•
4 items
•
Updated
Qwen3-VL-4B-Instruct-abliterated is an abliterated (v1.0) variant of Qwen3-VL-4B-Instruct, tailored for Abliterated Reasoning and Captioning. This model is designed to generate detailed and descriptive captions, as well as reasoning outputs, across a wide range of visual and multimodal contexts—including complex, sensitive, or nuanced content—while supporting diverse aspect ratios and resolutions.
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
model = Qwen3VLForConditionalGeneration.from_pretrained(
"prithivMLmods/Qwen3-VL-4B-Instruct-abliterated", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen3-VL-4B-Instruct-abliterated")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Provide a detailed caption and reasoning for this image."},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
This model is suited for:
Base model
Qwen/Qwen3-VL-4B-Instruct