Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
#11
by
autoevaluator
HF Staff
- opened
README.md
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- en
|
|
|
|
|
|
|
|
|
|
| 4 |
tags:
|
| 5 |
- summarization
|
| 6 |
- led
|
|
@@ -9,9 +12,6 @@ tags:
|
|
| 9 |
- booksum
|
| 10 |
- long-document
|
| 11 |
- long-form
|
| 12 |
-
license:
|
| 13 |
-
- apache-2.0
|
| 14 |
-
- bsd-3-clause
|
| 15 |
datasets:
|
| 16 |
- kmfoda/booksum
|
| 17 |
metrics:
|
|
@@ -30,39 +30,38 @@ widget:
|
|
| 30 |
deviation of the average recurrence interval, the more specific could be the long
|
| 31 |
term prediction of a future mainshock.
|
| 32 |
example_title: earthquakes
|
| 33 |
-
- text:
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
\ this function space (Section 5)."
|
| 66 |
example_title: scientific paper
|
| 67 |
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
| 68 |
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
|
@@ -107,50 +106,62 @@ widget:
|
|
| 107 |
in their business An important area of data analytics on the edge of corporate
|
| 108 |
IT and the Internet is Web Analytics.'
|
| 109 |
example_title: data science textbook
|
| 110 |
-
- text:
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
example_title: bigbird blog intro
|
| 155 |
- text: 'The majority of available text summarization datasets include short-form
|
| 156 |
source documents that lack long-range causal and temporal dependencies, and often
|
|
@@ -188,30 +199,36 @@ model-index:
|
|
| 188 |
config: kmfoda--booksum
|
| 189 |
split: test
|
| 190 |
metrics:
|
| 191 |
-
-
|
| 192 |
-
type: rouge
|
| 193 |
value: 31.7308
|
|
|
|
| 194 |
verified: true
|
| 195 |
-
|
| 196 |
-
|
| 197 |
value: 5.3311
|
|
|
|
| 198 |
verified: true
|
| 199 |
-
|
| 200 |
-
|
| 201 |
value: 16.1465
|
|
|
|
| 202 |
verified: true
|
| 203 |
-
|
| 204 |
-
|
| 205 |
value: 29.0883
|
|
|
|
| 206 |
verified: true
|
| 207 |
-
|
| 208 |
-
|
| 209 |
value: 4.815707206726074
|
|
|
|
| 210 |
verified: true
|
| 211 |
-
|
| 212 |
-
|
| 213 |
value: 154.9036
|
|
|
|
| 214 |
verified: true
|
|
|
|
| 215 |
- task:
|
| 216 |
type: summarization
|
| 217 |
name: Summarization
|
|
@@ -221,30 +238,36 @@ model-index:
|
|
| 221 |
config: samsum
|
| 222 |
split: test
|
| 223 |
metrics:
|
| 224 |
-
-
|
| 225 |
-
type: rouge
|
| 226 |
value: 33.4484
|
|
|
|
| 227 |
verified: true
|
| 228 |
-
|
| 229 |
-
|
| 230 |
value: 10.4249
|
|
|
|
| 231 |
verified: true
|
| 232 |
-
|
| 233 |
-
|
| 234 |
value: 24.5802
|
|
|
|
| 235 |
verified: true
|
| 236 |
-
|
| 237 |
-
|
| 238 |
value: 29.8226
|
|
|
|
| 239 |
verified: true
|
| 240 |
-
|
| 241 |
-
|
| 242 |
value: 4.176078796386719
|
|
|
|
| 243 |
verified: true
|
| 244 |
-
|
| 245 |
-
|
| 246 |
value: 65.4005
|
|
|
|
| 247 |
verified: true
|
|
|
|
| 248 |
- task:
|
| 249 |
type: summarization
|
| 250 |
name: Summarization
|
|
@@ -254,30 +277,36 @@ model-index:
|
|
| 254 |
config: default
|
| 255 |
split: test
|
| 256 |
metrics:
|
| 257 |
-
-
|
| 258 |
-
type: rouge
|
| 259 |
value: 40.5843
|
|
|
|
| 260 |
verified: true
|
| 261 |
-
|
| 262 |
-
|
| 263 |
value: 17.3401
|
|
|
|
| 264 |
verified: true
|
| 265 |
-
|
| 266 |
-
|
| 267 |
value: 25.1256
|
|
|
|
| 268 |
verified: true
|
| 269 |
-
|
| 270 |
-
|
| 271 |
value: 34.6619
|
|
|
|
| 272 |
verified: true
|
| 273 |
-
|
| 274 |
-
|
| 275 |
value: 4.792657375335693
|
|
|
|
| 276 |
verified: true
|
| 277 |
-
|
| 278 |
-
|
| 279 |
value: 163.9394
|
|
|
|
| 280 |
verified: true
|
|
|
|
| 281 |
- task:
|
| 282 |
type: summarization
|
| 283 |
name: Summarization
|
|
@@ -287,30 +316,36 @@ model-index:
|
|
| 287 |
config: default
|
| 288 |
split: test
|
| 289 |
metrics:
|
| 290 |
-
-
|
| 291 |
-
type: rouge
|
| 292 |
value: 39.0834
|
|
|
|
| 293 |
verified: true
|
| 294 |
-
|
| 295 |
-
|
| 296 |
value: 11.4043
|
|
|
|
| 297 |
verified: true
|
| 298 |
-
|
| 299 |
-
|
| 300 |
value: 19.1813
|
|
|
|
| 301 |
verified: true
|
| 302 |
-
|
| 303 |
-
|
| 304 |
value: 35.1581
|
|
|
|
| 305 |
verified: true
|
| 306 |
-
|
| 307 |
-
|
| 308 |
value: 4.654905319213867
|
|
|
|
| 309 |
verified: true
|
| 310 |
-
|
| 311 |
-
|
| 312 |
value: 186.2494
|
|
|
|
| 313 |
verified: true
|
|
|
|
| 314 |
---
|
| 315 |
|
| 316 |
# Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
license:
|
| 5 |
+
- apache-2.0
|
| 6 |
+
- bsd-3-clause
|
| 7 |
tags:
|
| 8 |
- summarization
|
| 9 |
- led
|
|
|
|
| 12 |
- booksum
|
| 13 |
- long-document
|
| 14 |
- long-form
|
|
|
|
|
|
|
|
|
|
| 15 |
datasets:
|
| 16 |
- kmfoda/booksum
|
| 17 |
metrics:
|
|
|
|
| 30 |
deviation of the average recurrence interval, the more specific could be the long
|
| 31 |
term prediction of a future mainshock.
|
| 32 |
example_title: earthquakes
|
| 33 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
| 34 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
| 35 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
| 36 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
| 37 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
| 38 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
| 39 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
| 40 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
| 41 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
| 42 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
| 43 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
| 44 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
| 45 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
| 46 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
| 47 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
| 48 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
| 49 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
| 50 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
| 51 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
| 52 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
| 53 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
| 54 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
| 55 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
| 56 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
| 57 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
| 58 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
| 59 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
| 60 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
| 61 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
| 62 |
+
observations. A neural network expresses a prior via the function space of its
|
| 63 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
| 64 |
+
bias of this function space (Section 5).'
|
|
|
|
| 65 |
example_title: scientific paper
|
| 66 |
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
| 67 |
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
|
|
|
| 106 |
in their business An important area of data analytics on the edge of corporate
|
| 107 |
IT and the Internet is Web Analytics.'
|
| 108 |
example_title: data science textbook
|
| 109 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
| 110 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
| 111 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
| 112 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
| 113 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
| 114 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
| 115 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
| 116 |
+
|
| 117 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
| 118 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
| 119 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
| 120 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
| 121 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
| 122 |
+
|
| 123 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
| 124 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
| 125 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
| 126 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
| 127 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
| 128 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
| 129 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
| 130 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
| 131 |
+
would be preferred over block sparse attention (which we are going to discuss
|
| 132 |
+
in this post).
|
| 133 |
+
|
| 134 |
+
If you wonder why we need more compute when working with longer sequences, this
|
| 135 |
+
blog post is just right for you!
|
| 136 |
+
|
| 137 |
+
Some of the main questions one might have when working with standard BERT-like
|
| 138 |
+
attention include:
|
| 139 |
+
|
| 140 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
| 141 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
| 142 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
| 143 |
+
answer those questions.
|
| 144 |
+
|
| 145 |
+
What tokens should be attended to? We will give a practical example of how attention
|
| 146 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
| 147 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
| 148 |
+
attend to all other tokens.
|
| 149 |
+
|
| 150 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
| 151 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
| 152 |
+
available is queried and build a sensible list of key tokens to attend to.
|
| 153 |
+
|
| 154 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
| 155 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
| 156 |
+
''question'', ''answering'']
|
| 157 |
+
|
| 158 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
| 159 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
| 160 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
| 161 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
| 162 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
| 163 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
| 164 |
+
This intuition is the idea behind the concept of sliding attention.'
|
| 165 |
example_title: bigbird blog intro
|
| 166 |
- text: 'The majority of available text summarization datasets include short-form
|
| 167 |
source documents that lack long-range causal and temporal dependencies, and often
|
|
|
|
| 199 |
config: kmfoda--booksum
|
| 200 |
split: test
|
| 201 |
metrics:
|
| 202 |
+
- type: rouge
|
|
|
|
| 203 |
value: 31.7308
|
| 204 |
+
name: ROUGE-1
|
| 205 |
verified: true
|
| 206 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjJmZjMxYTY0OGU3MzNjNmIzNmYyODNlNDg2ZGRhZDAzNTMwMDM5YWMxODc1OTc1ZWE3MzM2OTg1ODFhZDBkNCIsInZlcnNpb24iOjF9.B8BCKgySYVZW910_1zP0LfCpQYJbAe6loyWut76JlgZb2kV1_x9ybqtNESX0ka-lNqhYyXUNDpuS-7pTmsJVDg
|
| 207 |
+
- type: rouge
|
| 208 |
value: 5.3311
|
| 209 |
+
name: ROUGE-2
|
| 210 |
verified: true
|
| 211 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzViMmY4ODFjYTc5ODk5MmRhMDQ3ZDRiYWQwMDg0OTk3ZTA4NDAxYTNiNDgyMmI4NDA3ZDMwYWViOTBkODBjNyIsInZlcnNpb24iOjF9.MOhJLDcgvv93mVFL1igIgIiTAH3b2Xa4gmBObq7RF44Mmu8Kxtd1KP7rOlDVFOrtrsooGPGsyE1GMCQ2kqeMDg
|
| 212 |
+
- type: rouge
|
| 213 |
value: 16.1465
|
| 214 |
+
name: ROUGE-L
|
| 215 |
verified: true
|
| 216 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzNjMzEwMTliZGE3ZmQ4M2UxMDAyMTY3YzJjZmMyMDYyN2YyNDM0N2VhNzI1MDc1YTg4MTRjMmEzNjVkNTk1NCIsInZlcnNpb24iOjF9.XLJ-DVKiYLlbw5E5rWADKbzUzf5fNHhlTCWPCC5dU4NI9Yeh76aR7TPt36ZzLDwTBknnR8KHqlaF8F8YAvBUAg
|
| 217 |
+
- type: rouge
|
| 218 |
value: 29.0883
|
| 219 |
+
name: ROUGE-LSUM
|
| 220 |
verified: true
|
| 221 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTcwNzEwMmE5NjQxZTkzYmQyZDZmNzllYzYyNGI5OTMyNWMwNjdiM2I2YmM5YjdmY2E5OWQ3OTk3ZDA1MTc3YyIsInZlcnNpb24iOjF9.d6rFxjCB6RJNI_pn2DNNSjuZe4rdvj0RatkaTJRp5lP0F_AFfU5Zn9zRWzZJV7V-xMauIc4UhfdoLp9r_-CABA
|
| 222 |
+
- type: loss
|
| 223 |
value: 4.815707206726074
|
| 224 |
+
name: loss
|
| 225 |
verified: true
|
| 226 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTMwMTgxMmJkODY3MjkzOWJhMzJhOTIxMWVkODhjZmM0MWUzMWQ1N2JkZjRhOTQxNmU1YWVjYzQ0MDNlZWI3OSIsInZlcnNpb24iOjF9.mkBQHYhYFfDV6F4klXGJ1dSsF-pbCs-6F9zcw6IYznwmXUjtk7m5J4Zt4JAju5LKz4YizvEcUCl_L0WddnfvDA
|
| 227 |
+
- type: gen_len
|
| 228 |
value: 154.9036
|
| 229 |
+
name: gen_len
|
| 230 |
verified: true
|
| 231 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTc0ZmM1ZDM4MDE0MzY3MDM3OWJhNDkzZjJkZDdkMjU5M2JmMDJjYTIxODA1OTllNmY5ZWQzZDlmNWFiYzk4NiIsInZlcnNpb24iOjF9.VQ_O_xSTz870tnM08PJXQOwg9OsNNwI_HVX4S7AuW57_FzGGyRaWSuGE5SWzRS4Tur9YP0QxV4VV0Yoaoi3IAA
|
| 232 |
- task:
|
| 233 |
type: summarization
|
| 234 |
name: Summarization
|
|
|
|
| 238 |
config: samsum
|
| 239 |
split: test
|
| 240 |
metrics:
|
| 241 |
+
- type: rouge
|
|
|
|
| 242 |
value: 33.4484
|
| 243 |
+
name: ROUGE-1
|
| 244 |
verified: true
|
| 245 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTk4Yjg1YTc4YmY0MzBiZDU4ZjFhNzI4MjZkMWU1MzBlOWNlMjQ5ODMzY2YzYzRhYjJkMGUzNmI3ZjdkMzIzZSIsInZlcnNpb24iOjF9.AqS8A1OUiM0IZFBEGirv5F3Novk8lSUYSfPc3bYWLA6t-W7wgup3qA207eGbE5j9CkDWZ7QrSG1U6Z9A0sOqAA
|
| 246 |
+
- type: rouge
|
| 247 |
value: 10.4249
|
| 248 |
+
name: ROUGE-2
|
| 249 |
verified: true
|
| 250 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2U4NjUyNTFmOGM5OTlhZDMyMTlmM2E4OWI2NGFiMDAyMGJjMzRjNWNlMGEyYWFmNTE5ZWMxM2I0ZGZmNWNmOCIsInZlcnNpb24iOjF9.SgJcHJ4qoRWXFvFiwv1PUutWktvsxQNynVPEv-GtBgxd6WI7o561ONyco5U-5tcyE_1SbSCJzz-L-R-q3cvoDA
|
| 251 |
+
- type: rouge
|
| 252 |
value: 24.5802
|
| 253 |
+
name: ROUGE-L
|
| 254 |
verified: true
|
| 255 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQ5MDI5MzdiNGE5NDM0MmU5OThmZTBkNjkxMzg5N2IxNGVlODdhZTZhNjg3NzFjYWEyMzA3MTQxNjMyMjRkOCIsInZlcnNpb24iOjF9.Bg5dHqCcJjmxa-xGWNR5lD9g3quX7lKkH0pjiTd2xE5WiPoLLN2c0mYa2GovdW7__WnYwhhHC7es03jmvyZbCw
|
| 256 |
+
- type: rouge
|
| 257 |
value: 29.8226
|
| 258 |
+
name: ROUGE-LSUM
|
| 259 |
verified: true
|
| 260 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFhOTEwNGM1MmZkNDk2ZjQ1Y2MyNjM3MGI5MGY3MWVkM2I0MjU2NWFiYmEwMjE4MTJlZWIwOGQ2MjQ3YjgzYSIsInZlcnNpb24iOjF9.W_aQKs10oXQdKEczJBGM3iiwJgb-VaXTpyA3sGof5WbhHf9vITAQA-xvynh5LgKtXQ1zjx737hnHgjEsu_Y0Cw
|
| 261 |
+
- type: loss
|
| 262 |
value: 4.176078796386719
|
| 263 |
+
name: loss
|
| 264 |
verified: true
|
| 265 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2JhODQ5YTZkNDZkZGYyNGU2MzkxMWU5MTEwMGM2YmVjZTA5YzI5NTMxMDNhYjhlOTAxMzFiMDYwYmM0MjEzZCIsInZlcnNpb24iOjF9.OvZrPBOR5jhkoTGBgsInkH7j3_xpacXHDoT7UIXEnyXzadfBO-O-K6fjalLNZw8wSkbjHIFcL_6S_qTTxPsNAQ
|
| 266 |
+
- type: gen_len
|
| 267 |
value: 65.4005
|
| 268 |
+
name: gen_len
|
| 269 |
verified: true
|
| 270 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2NhYjc3ZjQzNDEwYmMzOTM0ODkyZTJhZWNhNzZhYmEyZTYxMzA2YTYzMWFjOTA5ZjlhYWMzODg3NzY1ZTUwYSIsInZlcnNpb24iOjF9.vk9bgmtQFeRwdY3VXjtrJr_5wUCIeoAkI3kO0cHxhxmJo6RvUnyXiut72FuB-mlLZvqgiNkaZ-u_bh0Z3DjuCw
|
| 271 |
- task:
|
| 272 |
type: summarization
|
| 273 |
name: Summarization
|
|
|
|
| 277 |
config: default
|
| 278 |
split: test
|
| 279 |
metrics:
|
| 280 |
+
- type: rouge
|
|
|
|
| 281 |
value: 40.5843
|
| 282 |
+
name: ROUGE-1
|
| 283 |
verified: true
|
| 284 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTVjMDkyMWZjYTQ0NzgzNGUxZjNiMTg3NjU1MWJlNTQ2MWQ1NjE1MDk1OTU4ZjJiNGQ5ODg3Y2VlMWUyMzllNyIsInZlcnNpb24iOjF9.OhqBcVIuHk7fzmdrsWMvUe1bLeVMZVstZUoZpP7C1vR-3aIDl7r6eBmPrt5w-KcNq5p4teNPBsq7oKzbd5ZgDQ
|
| 285 |
+
- type: rouge
|
| 286 |
value: 17.3401
|
| 287 |
+
name: ROUGE-2
|
| 288 |
verified: true
|
| 289 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGQxYmQzMmE0OTcyNTM5NmMwNjIxNzYxZDcwMDFkYzJkOWY4YWY3NTdhZGRhZDdlMDAxNzcwODQ5OGM3Mzc1MCIsInZlcnNpb24iOjF9.Pksn25EEqvmx757N7Swrd4yXc_xU7-AMN9yNe8lrbBa-l1LoI_2PUASvnjML4f705cfuyMAfb0FkFp5WfER2AA
|
| 290 |
+
- type: rouge
|
| 291 |
value: 25.1256
|
| 292 |
+
name: ROUGE-L
|
| 293 |
verified: true
|
| 294 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjhjYzI5MDBiMjk2NTY3MDNmZTdiOGYwMTRlYjIwZjAwMjdlNTAyYzdhYTJlODQ4MjYzYmQ3MjRlYTA2YzhhZSIsInZlcnNpb24iOjF9.1jPepsweS2bzIqDverQzzhmhFGch7gpoEGFGqQ8zW7K10aUKWFX8lt-uZAmTa1Z5ZhzyXGBzc3dReFPhWRRJBg
|
| 295 |
+
- type: rouge
|
| 296 |
value: 34.6619
|
| 297 |
+
name: ROUGE-LSUM
|
| 298 |
verified: true
|
| 299 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2VkZDIxNWJjOTA0NzFjOTIwOTdjYjc1M2EyNDVjZjY2ZjY3MjIxNDk3YTc5YWExNzAwN2FhOTc1NjVhYjBkYiIsInZlcnNpb24iOjF9.8opqHSUckPohoSF9jfPTpXDz2AtDwvdMqOdIXx2kE1tkOcbLPbOBfcc8RhRR98y8S26yC6EYFhFnf03CV2ejAQ
|
| 300 |
+
- type: loss
|
| 301 |
value: 4.792657375335693
|
| 302 |
+
name: loss
|
| 303 |
verified: true
|
| 304 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTY5ZTRkMGU3OGVkODMzMDU5OWE1NTM5YjA4NDliZDlmNzc2NzZjNjFmNTA3M2EwY2NmN2E0MWJmZjQ5ZDliMiIsInZlcnNpb24iOjF9.KCKdk8xt2NWcMmYKV3-9eVEsFm9MqGllSMu9QCFJFIQlnyNXllHKdBLouoaGQz8IRYXvZKH8_TLDPIQx-31jAg
|
| 305 |
+
- type: gen_len
|
| 306 |
value: 163.9394
|
| 307 |
+
name: gen_len
|
| 308 |
verified: true
|
| 309 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzdkZDYyZGUzYmFkZmI2NjUwYmQ0MzZjMmIyZjI1YTFiMzM4OThiZjBiMzljOTVkZTgwMjA0NTE5OGM2YmFjMiIsInZlcnNpb24iOjF9.XyMZLUdkUIF32KTJMuv_bJswQCx_Tfg4Fx823cURUixSeoIKps8_a634AreZ3Z8kb7bfE_sFGh3rM9KWsMxlDw
|
| 310 |
- task:
|
| 311 |
type: summarization
|
| 312 |
name: Summarization
|
|
|
|
| 316 |
config: default
|
| 317 |
split: test
|
| 318 |
metrics:
|
| 319 |
+
- type: rouge
|
|
|
|
| 320 |
value: 39.0834
|
| 321 |
+
name: ROUGE-1
|
| 322 |
verified: true
|
| 323 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjYzMmVlMDM4MTNkMTI4MjAyMTU2YTg1ZWQwNTI1MmJlNGUwZmE1NTRmYTljZTQwY2RlMjcxOTgyZGMyYTc0ZiIsInZlcnNpb24iOjF9.6yuSr7UmsFatwqQ-mEO4gmsEtWI05kGB5Ib2pnl05H1OiPT2uUwmqdUytUw8KTx9u1jv9q0cTF1cL-n2kPEJAA
|
| 324 |
+
- type: rouge
|
| 325 |
value: 11.4043
|
| 326 |
+
name: ROUGE-2
|
| 327 |
verified: true
|
| 328 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWI5N2U2ZWI1ODM2MWUwOTIzYTAzNmRhNDA2OWEzZWRjMGEzMjBmY2EwN2YyYzU1NWE0YjIyZDE3MWE0MmMxZCIsInZlcnNpb24iOjF9.wonuxbBl25TzEaHUH_E816nHJ1OSXKfkaq7eJzbLpsfeGwcDklxUSxZxRO7VBiBMaY3Qttf9ywmEIPp40HnpBA
|
| 329 |
+
- type: rouge
|
| 330 |
value: 19.1813
|
| 331 |
+
name: ROUGE-L
|
| 332 |
verified: true
|
| 333 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjU1NDZhN2NkMzZiZGJkODE4NDZiYjViOTZkNGMyNDlkNjBlZmFjYzU1N2IzMjFjYjY1MDU1Zjk2MzA0M2U4NyIsInZlcnNpb24iOjF9.bTCRzv3J9NiCh4aV23tAWGTvrdQCv_RS40zGwC4AJXtGS40cY7tJHYwBf9U9_rCetDBxqfjJpdaUbCAOglxLAA
|
| 334 |
+
- type: rouge
|
| 335 |
value: 35.1581
|
| 336 |
+
name: ROUGE-LSUM
|
| 337 |
verified: true
|
| 338 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDNhNTUyZjE4NjYxYjIzYThmMDM2YWNhM2QwYzY1ODI2ZTE3NmNjMmVhOTAzZjZlOWQwYzc1NzU2NDNjNzIxMyIsInZlcnNpb24iOjF9.cWlSbEBgrMN5D-fV_yL9geNMyMkIItcVO3wehNJPzFi3E0v1-4q8pnX-UgjLzto8X7JLi6as2V_HtZE4-C-CDw
|
| 339 |
+
- type: loss
|
| 340 |
value: 4.654905319213867
|
| 341 |
+
name: loss
|
| 342 |
verified: true
|
| 343 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTc5Nzk0ODhiNWUzNTAxNzk2YzZmMjU2NDliY2UzOTYyYTdmZGEyYjI5NDNhOTE0MGUxOTgxMGVjMmNhM2UyMSIsInZlcnNpb24iOjF9.eBBAebcl3AwkrjR6a8BvoSjDfpw8LWTRFjyIFHVzspvoOKVfnO8_NB_UeR_K127OwXyoZ70Z7X_aKJOe-2kTDA
|
| 344 |
+
- type: gen_len
|
| 345 |
value: 186.2494
|
| 346 |
+
name: gen_len
|
| 347 |
verified: true
|
| 348 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWI2NjVlYjgwYWJiMjcyMDUzMzEwNDNjZTMxMDM0MjAzMzk1ZmIwY2Q1ZDQ2Y2M5NDBlMDEzYzFkNWEyNzJmNiIsInZlcnNpb24iOjF9.iZ1Iy7FuWL4GH7LS5EylVj5eZRC3L2ZsbYQapAkMNzR_VXPoMGvoM69Hp-kU7gW55tmz2V4Qxhvoz9cM8fciBA
|
| 349 |
---
|
| 350 |
|
| 351 |
# Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization
|