GPUNet: Optimized for Mobile Deployment
Imagenet classifier and general purpose backbone
GPUNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This model is an implementation of GPUNet found here.
This repository provides scripts to run GPUNet on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_classification
- Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 10.49M
- Model size (float): 45.28MB
- Model size (w8a8): 21.3MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| GPUNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.724 ms | 0 - 50 MB | NPU | GPUNet.tflite |
| GPUNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.619 ms | 0 - 22 MB | NPU | GPUNet.dlc |
| GPUNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.777 ms | 0 - 60 MB | NPU | GPUNet.tflite |
| GPUNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.248 ms | 1 - 31 MB | NPU | GPUNet.dlc |
| GPUNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.221 ms | 0 - 179 MB | NPU | GPUNet.tflite |
| GPUNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.242 ms | 0 - 79 MB | NPU | GPUNet.dlc |
| GPUNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1.24 ms | 0 - 89 MB | NPU | GPUNet.onnx.zip |
| GPUNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.665 ms | 0 - 50 MB | NPU | GPUNet.tflite |
| GPUNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.693 ms | 0 - 22 MB | NPU | GPUNet.dlc |
| GPUNet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.724 ms | 0 - 50 MB | NPU | GPUNet.tflite |
| GPUNet | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.619 ms | 0 - 22 MB | NPU | GPUNet.dlc |
| GPUNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.227 ms | 0 - 178 MB | NPU | GPUNet.tflite |
| GPUNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.243 ms | 0 - 87 MB | NPU | GPUNet.dlc |
| GPUNet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.223 ms | 0 - 56 MB | NPU | GPUNet.tflite |
| GPUNet | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.209 ms | 1 - 29 MB | NPU | GPUNet.dlc |
| GPUNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.232 ms | 0 - 181 MB | NPU | GPUNet.tflite |
| GPUNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.246 ms | 2 - 61 MB | NPU | GPUNet.dlc |
| GPUNet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.665 ms | 0 - 50 MB | NPU | GPUNet.tflite |
| GPUNet | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.693 ms | 0 - 22 MB | NPU | GPUNet.dlc |
| GPUNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.886 ms | 0 - 63 MB | NPU | GPUNet.tflite |
| GPUNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.902 ms | 1 - 35 MB | NPU | GPUNet.dlc |
| GPUNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.88 ms | 0 - 34 MB | NPU | GPUNet.onnx.zip |
| GPUNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.69 ms | 0 - 57 MB | NPU | GPUNet.tflite |
| GPUNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.692 ms | 1 - 29 MB | NPU | GPUNet.dlc |
| GPUNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.714 ms | 0 - 27 MB | NPU | GPUNet.onnx.zip |
| GPUNet | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.584 ms | 0 - 56 MB | NPU | GPUNet.tflite |
| GPUNet | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.567 ms | 0 - 30 MB | NPU | GPUNet.dlc |
| GPUNet | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.638 ms | 1 - 27 MB | NPU | GPUNet.onnx.zip |
| GPUNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.334 ms | 113 - 113 MB | NPU | GPUNet.dlc |
| GPUNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.108 ms | 24 - 24 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.461 ms | 0 - 29 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.491 ms | 0 - 45 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.059 ms | 0 - 57 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1.118 ms | 0 - 67 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.3 ms | 0 - 29 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 4.008 ms | 0 - 42 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 49.526 ms | 28 - 40 MB | CPU | GPUNet.onnx.zip |
| GPUNet | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 43.987 ms | 24 - 41 MB | CPU | GPUNet.onnx.zip |
| GPUNet | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.461 ms | 0 - 29 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.064 ms | 0 - 56 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.649 ms | 0 - 36 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.067 ms | 0 - 57 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.3 ms | 0 - 29 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.763 ms | 0 - 38 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.74 ms | 0 - 47 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.514 ms | 0 - 38 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.577 ms | 14 - 54 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.433 ms | 0 - 37 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.525 ms | 0 - 45 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.214 ms | 55 - 55 MB | NPU | GPUNet.dlc |
| GPUNet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.039 ms | 14 - 14 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.118 ms | 0 - 29 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.407 ms | 0 - 28 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.573 ms | 0 - 43 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.858 ms | 0 - 41 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.436 ms | 0 - 62 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.615 ms | 0 - 62 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 0.842 ms | 0 - 39 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.628 ms | 0 - 29 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.815 ms | 0 - 29 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 1.577 ms | 0 - 37 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 2.213 ms | 0 - 36 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 12.425 ms | 12 - 26 MB | CPU | GPUNet.onnx.zip |
| GPUNet | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 8.038 ms | 0 - 3 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 10.502 ms | 5 - 23 MB | CPU | GPUNet.onnx.zip |
| GPUNet | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1.118 ms | 0 - 29 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.407 ms | 0 - 28 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.442 ms | 6 - 67 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.617 ms | 0 - 62 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.874 ms | 0 - 35 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.067 ms | 0 - 35 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.435 ms | 0 - 62 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.614 ms | 0 - 62 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.628 ms | 0 - 29 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.815 ms | 0 - 29 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.34 ms | 0 - 40 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.469 ms | 0 - 40 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.626 ms | 0 - 42 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.268 ms | 0 - 32 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.34 ms | 0 - 32 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.525 ms | 0 - 41 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.26 ms | 0 - 37 MB | NPU | GPUNet.tflite |
| GPUNet | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.292 ms | 0 - 37 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.529 ms | 0 - 42 MB | NPU | GPUNet.onnx.zip |
| GPUNet | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.721 ms | 68 - 68 MB | NPU | GPUNet.dlc |
| GPUNet | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.761 ms | 14 - 14 MB | NPU | GPUNet.onnx.zip |
Installation
Install the package via pip:
pip install qai-hub-models
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.gpunet.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.gpunet.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.gpunet.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.gpunet import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on GPUNet's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of GPUNet can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 39
