quzo/textf22

This is a PEFT LoRA derived from black-forest-labs/FLUX.2-dev.

The main validation prompt used during training was:

๐ŸŸซ man is holding a sign that says hello world from flux2

Validation settings

  • CFG: 4.0
  • CFG Rescale: 0.0
  • Steps: 16
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 1

  • Training steps: 1200

  • Learning rate: 0.0001

    • Learning rate schedule: constant
    • Warmup steps: 0
  • Max grad value: 2.0

  • Effective batch size: 1

    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True

  • Prediction type: flow_matching[]

  • Optimizer: adamw_bf16

  • Trainable parameter precision: Pure BF16

  • Base model precision: no_change

  • Caption dropout probability: 0.1%

  • LoRA Rank: 32

  • LoRA Alpha: None

  • LoRA Dropout: 0.1

  • LoRA initialisation style: default

  • LoRA mode: Standard

Datasets

emi-256

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 1
  • Resolution: 0.065536 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

emi-crop-256

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 2
  • Resolution: 0.065536 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square
  • Used for regularisation data: No

emi-512

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 3
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

emi-crop-512

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 2
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square
  • Used for regularisation data: No

emi-768

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 2
  • Resolution: 0.589824 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

emi-crop-768

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 2
  • Resolution: 0.589824 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square
  • Used for regularisation data: No

emi-1024

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 3
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

emi-crop-1024

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 2
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square
  • Used for regularisation data: No

emi-1440

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 2
  • Resolution: 2.0736 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

emi-crop-1440

  • Repeats: 10
  • Total number of images: 10
  • Total number of aspect buckets: 2
  • Resolution: 2.0736 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.2-dev'
adapter_id = 'quzo/quzo/textf22'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)

prompt = "๐ŸŸซ man is holding a sign that says hello world from flux2"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'

## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=16,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.0,
).images[0]

model_output.save("output.png", format="PNG")
Downloads last month
19
Inference Providers NEW

Model tree for quzo/textf22

Adapter
(14)
this model