quzo/textf22
This is a PEFT LoRA derived from black-forest-labs/FLUX.2-dev.
The main validation prompt used during training was:
๐ซ man is holding a sign that says hello world from flux2
Validation settings
- CFG:
4.0 - CFG Rescale:
0.0 - Steps:
16 - Sampler:
FlowMatchEulerDiscreteScheduler - Seed:
42 - Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 1
Training steps: 1200
Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 0
Max grad value: 2.0
Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
Gradient checkpointing: True
Prediction type: flow_matching[]
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Base model precision:
no_changeCaption dropout probability: 0.1%
LoRA Rank: 32
LoRA Alpha: None
LoRA Dropout: 0.1
LoRA initialisation style: default
LoRA mode: Standard
Datasets
emi-256
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
emi-crop-256
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 0.065536 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
emi-512
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 3
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
emi-crop-512
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
emi-768
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
emi-crop-768
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
emi-1024
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 3
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
emi-crop-1024
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
emi-1440
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
emi-crop-1440
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 2.0736 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.2-dev'
adapter_id = 'quzo/quzo/textf22'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "๐ซ man is holding a sign that says hello world from flux2"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=16,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=4.0,
).images[0]
model_output.save("output.png", format="PNG")
- Downloads last month
- 19
Model tree for quzo/textf22
Base model
black-forest-labs/FLUX.2-dev