MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
 - Base model: microsoft/mpnet-base
 - Maximum Sequence Length: 512 tokens
 - Output Dimensionality: 768 tokens
 - Similarity Function: Cosine Similarity
 - Training Dataset:
 - Language: en
 - License: apache-2.0
 
Model Sources
- Documentation: Sentence Transformers Documentation
 - Repository: Sentence Transformers on GitHub
 - Hugging Face: Sentence Transformers on Hugging Face
 
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("rajistics/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
    'Yes it did.',
    'oh does it sure',
    'The puppets eat human.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset: 
all-nli-dev - Evaluated with 
TripletEvaluator 
| Metric | Value | 
|---|---|
| cosine_accuracy | 0.8452 | 
| dot_accuracy | 0.1526 | 
| manhattan_accuracy | 0.842 | 
| euclidean_accuracy | 0.8399 | 
| max_accuracy | 0.8452 | 
Triplet
- Dataset: 
all-nli-test - Evaluated with 
TripletEvaluator 
| Metric | Value | 
|---|---|
| cosine_accuracy | 0.8662 | 
| dot_accuracy | 0.1327 | 
| manhattan_accuracy | 0.8608 | 
| euclidean_accuracy | 0.8635 | 
| max_accuracy | 0.8662 | 
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
 - Size: 100,000 training samples
 - Columns: 
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
 - mean: 10.46 tokens
 - max: 46 tokens
 
- min: 6 tokens
 - mean: 12.81 tokens
 - max: 40 tokens
 
- min: 5 tokens
 - mean: 13.4 tokens
 - max: 50 tokens
 
 - Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss: 
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" } 
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
 - Size: 6,584 evaluation samples
 - Columns: 
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
 - mean: 17.95 tokens
 - max: 63 tokens
 
- min: 4 tokens
 - mean: 9.78 tokens
 - max: 29 tokens
 
- min: 5 tokens
 - mean: 10.35 tokens
 - max: 29 tokens
 
 - Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss: 
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" } 
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy | 
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.6832 | - | 
| 0.016 | 100 | 2.6596 | 1.0454 | 0.7942 | - | 
| 0.032 | 200 | 0.9172 | 0.8283 | 0.8071 | - | 
| 0.048 | 300 | 1.3038 | 0.8209 | 0.8048 | - | 
| 0.064 | 400 | 0.8026 | 0.8679 | 0.8009 | - | 
| 0.08 | 500 | 0.8252 | 0.9687 | 0.7906 | - | 
| 0.096 | 600 | 0.9903 | 1.0263 | 0.7893 | - | 
| 0.112 | 700 | 0.8719 | 1.3540 | 0.7708 | - | 
| 0.128 | 800 | 0.9602 | 1.4494 | 0.7622 | - | 
| 0.144 | 900 | 1.0746 | 1.3507 | 0.7646 | - | 
| 0.16 | 1000 | 1.0095 | 1.4260 | 0.7672 | - | 
| 0.176 | 1100 | 1.1258 | 1.2828 | 0.7661 | - | 
| 0.192 | 1200 | 0.9865 | 1.4121 | 0.7418 | - | 
| 0.208 | 1300 | 0.8064 | 1.4133 | 0.7471 | - | 
| 0.224 | 1400 | 0.8036 | 1.2877 | 0.7631 | - | 
| 0.24 | 1500 | 0.899 | 1.0845 | 0.7764 | - | 
| 0.256 | 1600 | 0.7128 | 1.0439 | 0.7679 | - | 
| 0.272 | 1700 | 0.8902 | 1.2055 | 0.7638 | - | 
| 0.288 | 1800 | 0.8587 | 1.1773 | 0.7641 | - | 
| 0.304 | 1900 | 0.797 | 1.0642 | 0.7898 | - | 
| 0.32 | 2000 | 0.7618 | 1.0628 | 0.8232 | - | 
| 0.336 | 2100 | 0.6756 | 1.1256 | 0.8155 | - | 
| 0.352 | 2200 | 0.6782 | 1.0629 | 0.8382 | - | 
| 0.368 | 2300 | 0.7761 | 1.1455 | 0.8071 | - | 
| 0.384 | 2400 | 0.8032 | 1.0287 | 0.7884 | - | 
| 0.4 | 2500 | 0.7219 | 1.0806 | 0.8323 | - | 
| 0.416 | 2600 | 0.5967 | 0.9803 | 0.8180 | - | 
| 0.432 | 2700 | 0.8474 | 1.3061 | 0.8223 | - | 
| 0.448 | 2800 | 0.9129 | 0.9933 | 0.8136 | - | 
| 0.464 | 2900 | 0.8005 | 0.8897 | 0.8235 | - | 
| 0.48 | 3000 | 0.73 | 0.9185 | 0.8349 | - | 
| 0.496 | 3100 | 0.7637 | 0.9318 | 0.8367 | - | 
| 0.512 | 3200 | 0.5791 | 0.8514 | 0.8452 | - | 
| 0.5123 | 3202 | - | - | - | 0.8662 | 
Framework Versions
- Python: 3.10.12
 - Sentence Transformers: 3.0.0
 - Transformers: 4.41.1
 - PyTorch: 2.3.0+cu121
 - Accelerate: 0.30.1
 - Datasets: 2.19.2
 - Tokenizers: 0.19.1
 
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
- Downloads last month
 - -
 
Model tree for rajistics/mpnet-base-all-nli-triplet
Base model
microsoft/mpnet-baseEvaluation results
- Cosine Accuracy on all nli devself-reported0.845
 - Dot Accuracy on all nli devself-reported0.153
 - Manhattan Accuracy on all nli devself-reported0.842
 - Euclidean Accuracy on all nli devself-reported0.840
 - Max Accuracy on all nli devself-reported0.845
 - Cosine Accuracy on all nli testself-reported0.866
 - Dot Accuracy on all nli testself-reported0.133
 - Manhattan Accuracy on all nli testself-reported0.861
 - Euclidean Accuracy on all nli testself-reported0.864
 - Max Accuracy on all nli testself-reported0.866