train_conala_101112_1760638010
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the conala dataset. It achieves the following results on the evaluation set:
- Loss: 0.6943
- Num Input Tokens Seen: 3060208
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 101112
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 2.3421 | 1.0 | 536 | 2.2859 | 153344 |
| 1.758 | 2.0 | 1072 | 1.1338 | 306640 |
| 1.1588 | 3.0 | 1608 | 0.9419 | 459376 |
| 0.6676 | 4.0 | 2144 | 0.8533 | 612008 |
| 0.7588 | 5.0 | 2680 | 0.8118 | 764936 |
| 0.8085 | 6.0 | 3216 | 0.7846 | 917624 |
| 0.7514 | 7.0 | 3752 | 0.7636 | 1070488 |
| 0.5654 | 8.0 | 4288 | 0.7469 | 1223384 |
| 0.6064 | 9.0 | 4824 | 0.7342 | 1376240 |
| 0.4365 | 10.0 | 5360 | 0.7238 | 1529640 |
| 0.8136 | 11.0 | 5896 | 0.7153 | 1682336 |
| 0.5549 | 12.0 | 6432 | 0.7098 | 1835928 |
| 0.7974 | 13.0 | 6968 | 0.7043 | 1989136 |
| 0.5278 | 14.0 | 7504 | 0.7004 | 2142632 |
| 0.7199 | 15.0 | 8040 | 0.6974 | 2295280 |
| 0.5653 | 16.0 | 8576 | 0.6962 | 2447904 |
| 0.6505 | 17.0 | 9112 | 0.6950 | 2600776 |
| 0.6361 | 18.0 | 9648 | 0.6947 | 2753536 |
| 0.8247 | 19.0 | 10184 | 0.6947 | 2906984 |
| 0.5962 | 20.0 | 10720 | 0.6943 | 3060208 |
Framework versions
- PEFT 0.17.1
- Transformers 4.51.3
- Pytorch 2.9.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 148
Model tree for rbelanec/train_conala_101112_1760638010
Base model
meta-llama/Meta-Llama-3-8B-Instruct