train_qnli_101112_1760638091

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the qnli dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0427
  • Num Input Tokens Seen: 207147488

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 101112
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.0444 1.0 23567 0.0706 10356896
0.0836 2.0 47134 0.0562 20715296
0.0168 3.0 70701 0.0514 31065184
0.0576 4.0 94268 0.0478 41428128
0.0825 5.0 117835 0.0459 51784320
0.0492 6.0 141402 0.0446 62144160
0.1004 7.0 164969 0.0444 72511552
0.043 8.0 188536 0.0440 82864256
0.0755 9.0 212103 0.0427 93220320
0.0695 10.0 235670 0.0436 103572992
0.0495 11.0 259237 0.0433 113924768
0.0236 12.0 282804 0.0437 124282240
0.0065 13.0 306371 0.0443 134645600
0.0056 14.0 329938 0.0431 145000704
0.0076 15.0 353505 0.0439 155349152
0.0326 16.0 377072 0.0435 165706304
0.0318 17.0 400639 0.0443 176064704
0.0614 18.0 424206 0.0445 186423936
0.0107 19.0 447773 0.0444 196786464
0.0409 20.0 471340 0.0443 207147488

Framework versions

  • PEFT 0.17.1
  • Transformers 4.51.3
  • Pytorch 2.9.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
70
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_qnli_101112_1760638091

Adapter
(2009)
this model