train_rte_1744902661
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the rte dataset. It achieves the following results on the evaluation set:
- Loss: 0.0805
- Num Input Tokens Seen: 98761256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.0779 | 1.4207 | 200 | 0.0918 | 496688 |
| 0.0755 | 2.8414 | 400 | 0.0845 | 991488 |
| 0.0428 | 4.2567 | 600 | 0.0805 | 1481464 |
| 0.0787 | 5.6774 | 800 | 0.0808 | 1979088 |
| 0.0332 | 7.0927 | 1000 | 0.0825 | 2468504 |
| 0.0234 | 8.5134 | 1200 | 0.0847 | 2963120 |
| 0.0565 | 9.9340 | 1400 | 0.0859 | 3459048 |
| 0.0294 | 11.3494 | 1600 | 0.0934 | 3951104 |
| 0.0229 | 12.7701 | 1800 | 0.1011 | 4445432 |
| 0.0214 | 14.1854 | 2000 | 0.1132 | 4938824 |
| 0.004 | 15.6061 | 2200 | 0.1359 | 5433720 |
| 0.0013 | 17.0214 | 2400 | 0.1360 | 5925896 |
| 0.0017 | 18.4421 | 2600 | 0.1567 | 6422360 |
| 0.0012 | 19.8627 | 2800 | 0.1644 | 6914152 |
| 0.0064 | 21.2781 | 3000 | 0.1777 | 7403976 |
| 0.0006 | 22.6988 | 3200 | 0.1956 | 7902520 |
| 0.0002 | 24.1141 | 3400 | 0.2198 | 8394080 |
| 0.0003 | 25.5348 | 3600 | 0.2378 | 8884224 |
| 0.0001 | 26.9554 | 3800 | 0.2536 | 9382368 |
| 0.0001 | 28.3708 | 4000 | 0.2729 | 9872768 |
| 0.0 | 29.7914 | 4200 | 0.2836 | 10366000 |
| 0.0001 | 31.2068 | 4400 | 0.2932 | 10867488 |
| 0.0 | 32.6275 | 4600 | 0.2957 | 11358568 |
| 0.0001 | 34.0428 | 4800 | 0.3032 | 11852320 |
| 0.0 | 35.4635 | 5000 | 0.3060 | 12343880 |
| 0.0 | 36.8841 | 5200 | 0.3148 | 12837040 |
| 0.0 | 38.2995 | 5400 | 0.3201 | 13329368 |
| 0.0 | 39.7201 | 5600 | 0.3267 | 13828784 |
| 0.0 | 41.1355 | 5800 | 0.3299 | 14315304 |
| 0.0 | 42.5561 | 6000 | 0.3314 | 14806592 |
| 0.0 | 43.9768 | 6200 | 0.3411 | 15305208 |
| 0.0 | 45.3922 | 6400 | 0.3413 | 15791608 |
| 0.0 | 46.8128 | 6600 | 0.3466 | 16292464 |
| 0.0 | 48.2282 | 6800 | 0.3515 | 16781768 |
| 0.0 | 49.6488 | 7000 | 0.3563 | 17278560 |
| 0.0 | 51.0642 | 7200 | 0.3560 | 17769384 |
| 0.0 | 52.4848 | 7400 | 0.3619 | 18262680 |
| 0.0 | 53.9055 | 7600 | 0.3626 | 18763936 |
| 0.0 | 55.3209 | 7800 | 0.3667 | 19258096 |
| 0.0 | 56.7415 | 8000 | 0.3683 | 19753648 |
| 0.0 | 58.1569 | 8200 | 0.3750 | 20244128 |
| 0.0 | 59.5775 | 8400 | 0.3802 | 20739208 |
| 0.0 | 60.9982 | 8600 | 0.3804 | 21236872 |
| 0.0 | 62.4135 | 8800 | 0.3883 | 21726944 |
| 0.0 | 63.8342 | 9000 | 0.3856 | 22223288 |
| 0.0 | 65.2496 | 9200 | 0.3914 | 22716672 |
| 0.0 | 66.6702 | 9400 | 0.3966 | 23209088 |
| 0.0 | 68.0856 | 9600 | 0.3962 | 23701520 |
| 0.0 | 69.5062 | 9800 | 0.4016 | 24197944 |
| 0.0 | 70.9269 | 10000 | 0.3996 | 24694272 |
| 0.0 | 72.3422 | 10200 | 0.3997 | 25191256 |
| 0.0 | 73.7629 | 10400 | 0.4040 | 25688288 |
| 0.0 | 75.1783 | 10600 | 0.4158 | 26177720 |
| 0.0 | 76.5989 | 10800 | 0.4156 | 26675248 |
| 0.0 | 78.0143 | 11000 | 0.4173 | 27168496 |
| 0.0 | 79.4349 | 11200 | 0.4198 | 27664360 |
| 0.0 | 80.8556 | 11400 | 0.4272 | 28161984 |
| 0.0 | 82.2709 | 11600 | 0.4260 | 28655448 |
| 0.0 | 83.6916 | 11800 | 0.4278 | 29151808 |
| 0.0 | 85.1070 | 12000 | 0.4304 | 29642952 |
| 0.0 | 86.5276 | 12200 | 0.4381 | 30140536 |
| 0.0 | 87.9483 | 12400 | 0.4350 | 30639808 |
| 0.0 | 89.3636 | 12600 | 0.4398 | 31135048 |
| 0.0 | 90.7843 | 12800 | 0.4397 | 31630256 |
| 0.0 | 92.1996 | 13000 | 0.4424 | 32121256 |
| 0.0 | 93.6203 | 13200 | 0.4532 | 32618184 |
| 0.0 | 95.0357 | 13400 | 0.4497 | 33115432 |
| 0.0 | 96.4563 | 13600 | 0.4475 | 33609472 |
| 0.0 | 97.8770 | 13800 | 0.4516 | 34098712 |
| 0.0 | 99.2923 | 14000 | 0.4572 | 34590368 |
| 0.0 | 100.7130 | 14200 | 0.4523 | 35081248 |
| 0.0 | 102.1283 | 14400 | 0.4666 | 35571464 |
| 0.0 | 103.5490 | 14600 | 0.4678 | 36063824 |
| 0.0 | 104.9697 | 14800 | 0.4681 | 36557944 |
| 0.0 | 106.3850 | 15000 | 0.4724 | 37048560 |
| 0.0 | 107.8057 | 15200 | 0.4635 | 37543928 |
| 0.0 | 109.2210 | 15400 | 0.4800 | 38035968 |
| 0.0 | 110.6417 | 15600 | 0.4819 | 38526000 |
| 0.0 | 112.0570 | 15800 | 0.4826 | 39021440 |
| 0.0 | 113.4777 | 16000 | 0.4793 | 39519712 |
| 0.0 | 114.8984 | 16200 | 0.4884 | 40014440 |
| 0.0 | 116.3137 | 16400 | 0.4961 | 40509368 |
| 0.0 | 117.7344 | 16600 | 0.4914 | 41001000 |
| 0.0 | 119.1497 | 16800 | 0.4953 | 41492672 |
| 0.0 | 120.5704 | 17000 | 0.4933 | 41991984 |
| 0.0 | 121.9911 | 17200 | 0.5009 | 42486736 |
| 0.0 | 123.4064 | 17400 | 0.5002 | 42979888 |
| 0.0 | 124.8271 | 17600 | 0.5029 | 43473920 |
| 0.0 | 126.2424 | 17800 | 0.5095 | 43963728 |
| 0.0 | 127.6631 | 18000 | 0.5176 | 44457208 |
| 0.0 | 129.0784 | 18200 | 0.5129 | 44952664 |
| 0.0 | 130.4991 | 18400 | 0.5183 | 45446704 |
| 0.0 | 131.9198 | 18600 | 0.5097 | 45936552 |
| 0.0 | 133.3351 | 18800 | 0.5149 | 46426240 |
| 0.0 | 134.7558 | 19000 | 0.5187 | 46921256 |
| 0.0 | 136.1711 | 19200 | 0.5181 | 47412080 |
| 0.0 | 137.5918 | 19400 | 0.5187 | 47911024 |
| 0.0 | 139.0071 | 19600 | 0.5154 | 48404752 |
| 0.0 | 140.4278 | 19800 | 0.5252 | 48901416 |
| 0.0 | 141.8485 | 20000 | 0.5204 | 49400736 |
| 0.0 | 143.2638 | 20200 | 0.5231 | 49895752 |
| 0.0 | 144.6845 | 20400 | 0.5181 | 50380736 |
| 0.0 | 146.0998 | 20600 | 0.5283 | 50871288 |
| 0.0 | 147.5205 | 20800 | 0.5325 | 51360328 |
| 0.0 | 148.9412 | 21000 | 0.5230 | 51853696 |
| 0.0 | 150.3565 | 21200 | 0.5282 | 52348712 |
| 0.0 | 151.7772 | 21400 | 0.5331 | 52842992 |
| 0.0 | 153.1925 | 21600 | 0.5305 | 53335368 |
| 0.0 | 154.6132 | 21800 | 0.5353 | 53831240 |
| 0.0 | 156.0285 | 22000 | 0.5339 | 54320840 |
| 0.0 | 157.4492 | 22200 | 0.5395 | 54818304 |
| 0.0 | 158.8699 | 22400 | 0.5286 | 55310560 |
| 0.0 | 160.2852 | 22600 | 0.5361 | 55805192 |
| 0.0 | 161.7059 | 22800 | 0.5427 | 56294240 |
| 0.0 | 163.1212 | 23000 | 0.5402 | 56785216 |
| 0.0 | 164.5419 | 23200 | 0.5328 | 57277112 |
| 0.0 | 165.9626 | 23400 | 0.5400 | 57768960 |
| 0.0 | 167.3779 | 23600 | 0.5325 | 58259216 |
| 0.0 | 168.7986 | 23800 | 0.5375 | 58754552 |
| 0.0 | 170.2139 | 24000 | 0.5380 | 59250304 |
| 0.0 | 171.6346 | 24200 | 0.5376 | 59743752 |
| 0.0 | 173.0499 | 24400 | 0.5403 | 60240920 |
| 0.0 | 174.4706 | 24600 | 0.5476 | 60738488 |
| 0.0 | 175.8913 | 24800 | 0.5405 | 61232632 |
| 0.0 | 177.3066 | 25000 | 0.5426 | 61726896 |
| 0.0 | 178.7273 | 25200 | 0.5500 | 62220440 |
| 0.0 | 180.1426 | 25400 | 0.5384 | 62713544 |
| 0.0 | 181.5633 | 25600 | 0.5392 | 63208560 |
| 0.0 | 182.9840 | 25800 | 0.5366 | 63703320 |
| 0.0 | 184.3993 | 26000 | 0.5411 | 64195280 |
| 0.0 | 185.8200 | 26200 | 0.5460 | 64693448 |
| 0.0 | 187.2353 | 26400 | 0.5340 | 65180864 |
| 0.0 | 188.6560 | 26600 | 0.5409 | 65680024 |
| 0.0 | 190.0713 | 26800 | 0.5322 | 66173368 |
| 0.0 | 191.4920 | 27000 | 0.5351 | 66664968 |
| 0.0 | 192.9127 | 27200 | 0.5311 | 67157528 |
| 0.0 | 194.3280 | 27400 | 0.5385 | 67657848 |
| 0.0 | 195.7487 | 27600 | 0.5397 | 68154280 |
| 0.0 | 197.1640 | 27800 | 0.5369 | 68648760 |
| 0.0 | 198.5847 | 28000 | 0.5372 | 69145424 |
| 0.0 | 200.0 | 28200 | 0.5430 | 69634592 |
| 0.0 | 201.4207 | 28400 | 0.5315 | 70126824 |
| 0.0 | 202.8414 | 28600 | 0.5439 | 70621048 |
| 0.0 | 204.2567 | 28800 | 0.5393 | 71112744 |
| 0.0 | 205.6774 | 29000 | 0.5434 | 71609328 |
| 0.0 | 207.0927 | 29200 | 0.5420 | 72096488 |
| 0.0 | 208.5134 | 29400 | 0.5392 | 72590600 |
| 0.0 | 209.9340 | 29600 | 0.5428 | 73085400 |
| 0.0 | 211.3494 | 29800 | 0.5378 | 73578704 |
| 0.0 | 212.7701 | 30000 | 0.5413 | 74071832 |
| 0.0 | 214.1854 | 30200 | 0.5365 | 74558088 |
| 0.0 | 215.6061 | 30400 | 0.5338 | 75054720 |
| 0.0 | 217.0214 | 30600 | 0.5447 | 75550968 |
| 0.0 | 218.4421 | 30800 | 0.5418 | 76052048 |
| 0.0 | 219.8627 | 31000 | 0.5440 | 76544760 |
| 0.0 | 221.2781 | 31200 | 0.5407 | 77039312 |
| 0.0 | 222.6988 | 31400 | 0.5393 | 77536608 |
| 0.0 | 224.1141 | 31600 | 0.5339 | 78029096 |
| 0.0 | 225.5348 | 31800 | 0.5421 | 78521640 |
| 0.0 | 226.9554 | 32000 | 0.5473 | 79014704 |
| 0.0 | 228.3708 | 32200 | 0.5443 | 79509056 |
| 0.0 | 229.7914 | 32400 | 0.5436 | 80004760 |
| 0.0 | 231.2068 | 32600 | 0.5393 | 80498576 |
| 0.0 | 232.6275 | 32800 | 0.5429 | 80992160 |
| 0.0 | 234.0428 | 33000 | 0.5428 | 81484216 |
| 0.0 | 235.4635 | 33200 | 0.5518 | 81981536 |
| 0.0 | 236.8841 | 33400 | 0.5384 | 82469112 |
| 0.0 | 238.2995 | 33600 | 0.5381 | 82967264 |
| 0.0 | 239.7201 | 33800 | 0.5362 | 83460632 |
| 0.0 | 241.1355 | 34000 | 0.5469 | 83946936 |
| 0.0 | 242.5561 | 34200 | 0.5378 | 84438976 |
| 0.0 | 243.9768 | 34400 | 0.5419 | 84936992 |
| 0.0 | 245.3922 | 34600 | 0.5366 | 85424648 |
| 0.0 | 246.8128 | 34800 | 0.5383 | 85921552 |
| 0.0 | 248.2282 | 35000 | 0.5398 | 86414392 |
| 0.0 | 249.6488 | 35200 | 0.5405 | 86904424 |
| 0.0 | 251.0642 | 35400 | 0.5402 | 87399560 |
| 0.0 | 252.4848 | 35600 | 0.5418 | 87900568 |
| 0.0 | 253.9055 | 35800 | 0.5278 | 88391952 |
| 0.0 | 255.3209 | 36000 | 0.5487 | 88887288 |
| 0.0 | 256.7415 | 36200 | 0.5428 | 89375944 |
| 0.0 | 258.1569 | 36400 | 0.5406 | 89868176 |
| 0.0 | 259.5775 | 36600 | 0.5420 | 90365056 |
| 0.0 | 260.9982 | 36800 | 0.5366 | 90855096 |
| 0.0 | 262.4135 | 37000 | 0.5435 | 91348504 |
| 0.0 | 263.8342 | 37200 | 0.5350 | 91843280 |
| 0.0 | 265.2496 | 37400 | 0.5408 | 92339160 |
| 0.0 | 266.6702 | 37600 | 0.5417 | 92834936 |
| 0.0 | 268.0856 | 37800 | 0.5320 | 93329096 |
| 0.0 | 269.5062 | 38000 | 0.5405 | 93825960 |
| 0.0 | 270.9269 | 38200 | 0.5393 | 94316976 |
| 0.0 | 272.3422 | 38400 | 0.5388 | 94808456 |
| 0.0 | 273.7629 | 38600 | 0.5399 | 95304384 |
| 0.0 | 275.1783 | 38800 | 0.5384 | 95796256 |
| 0.0 | 276.5989 | 39000 | 0.5312 | 96293992 |
| 0.0 | 278.0143 | 39200 | 0.5339 | 96783960 |
| 0.0 | 279.4349 | 39400 | 0.5395 | 97275176 |
| 0.0 | 280.8556 | 39600 | 0.5489 | 97769584 |
| 0.0 | 282.2709 | 39800 | 0.5464 | 98266712 |
| 0.0 | 283.6916 | 40000 | 0.5345 | 98761256 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_rte_1744902661
Base model
meta-llama/Meta-Llama-3-8B-Instruct