train_winogrande_101112_1760638067

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the winogrande dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2432
  • Num Input Tokens Seen: 34100624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 101112
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2238 2.0 16160 0.2324 3410576
0.2434 4.0 32320 0.2204 6820640
0.1744 6.0 48480 0.1129 10230096
0.0037 8.0 64640 0.0676 13639760
0.0006 10.0 80800 0.0786 17048912
0.063 12.0 96960 0.1006 20458720
0.0001 14.0 113120 0.1434 23869008
0.0 16.0 129280 0.1929 27280464
0.0 18.0 145440 0.2320 30690528
0.0 20.0 161600 0.2432 34100624

Framework versions

  • PEFT 0.17.1
  • Transformers 4.51.3
  • Pytorch 2.9.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
65
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_winogrande_101112_1760638067

Adapter
(2009)
this model