train_winogrande_101112_1760638067
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the winogrande dataset. It achieves the following results on the evaluation set:
- Loss: 0.2432
- Num Input Tokens Seen: 34100624
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 101112
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.2238 | 2.0 | 16160 | 0.2324 | 3410576 |
| 0.2434 | 4.0 | 32320 | 0.2204 | 6820640 |
| 0.1744 | 6.0 | 48480 | 0.1129 | 10230096 |
| 0.0037 | 8.0 | 64640 | 0.0676 | 13639760 |
| 0.0006 | 10.0 | 80800 | 0.0786 | 17048912 |
| 0.063 | 12.0 | 96960 | 0.1006 | 20458720 |
| 0.0001 | 14.0 | 113120 | 0.1434 | 23869008 |
| 0.0 | 16.0 | 129280 | 0.1929 | 27280464 |
| 0.0 | 18.0 | 145440 | 0.2320 | 30690528 |
| 0.0 | 20.0 | 161600 | 0.2432 | 34100624 |
Framework versions
- PEFT 0.17.1
- Transformers 4.51.3
- Pytorch 2.9.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 65
Model tree for rbelanec/train_winogrande_101112_1760638067
Base model
meta-llama/Meta-Llama-3-8B-Instruct