train_winogrande_101112_1760638068
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the winogrande dataset. It achieves the following results on the evaluation set:
- Loss: 0.2313
- Num Input Tokens Seen: 38366624
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.03
- train_batch_size: 4
- eval_batch_size: 4
- seed: 101112
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.2313 | 1.0 | 9090 | 0.2314 | 1917952 |
| 0.2347 | 2.0 | 18180 | 0.2317 | 3835840 |
| 0.2335 | 3.0 | 27270 | 0.2313 | 5753152 |
| 0.2317 | 4.0 | 36360 | 0.2316 | 7672000 |
| 0.2319 | 5.0 | 45450 | 0.2314 | 9590080 |
| 0.2293 | 6.0 | 54540 | 0.2314 | 11509088 |
| 0.2362 | 7.0 | 63630 | 0.2317 | 13427712 |
| 0.2314 | 8.0 | 72720 | 0.2313 | 15346672 |
| 0.2329 | 9.0 | 81810 | 0.2315 | 17265344 |
| 0.2319 | 10.0 | 90900 | 0.2315 | 19184224 |
| 0.2319 | 11.0 | 99990 | 0.2314 | 21102912 |
| 0.2324 | 12.0 | 109080 | 0.2314 | 23021312 |
| 0.2324 | 13.0 | 118170 | 0.2314 | 24938688 |
| 0.2309 | 14.0 | 127260 | 0.2314 | 26857088 |
| 0.2319 | 15.0 | 136350 | 0.2313 | 28775840 |
| 0.2324 | 16.0 | 145440 | 0.2313 | 30693088 |
| 0.2298 | 17.0 | 154530 | 0.2313 | 32612480 |
| 0.2309 | 18.0 | 163620 | 0.2313 | 34530176 |
| 0.2324 | 19.0 | 172710 | 0.2315 | 36447600 |
| 0.2319 | 20.0 | 181800 | 0.2313 | 38366624 |
Framework versions
- PEFT 0.17.1
- Transformers 4.51.3
- Pytorch 2.9.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 135
Model tree for rbelanec/train_winogrande_101112_1760638068
Base model
meta-llama/Meta-Llama-3-8B-Instruct