train_winogrande_101112_1760638069

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the winogrande dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2501
  • Num Input Tokens Seen: 38366624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 101112
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2313 1.0 9090 0.2313 1917952
0.2347 2.0 18180 0.2315 3835840
0.2279 3.0 27270 0.2303 5753152
0.2312 4.0 36360 0.2299 7672000
0.226 5.0 45450 0.2286 9590080
0.215 6.0 54540 0.2256 11509088
0.2366 7.0 63630 0.2220 13427712
0.1858 8.0 72720 0.2162 15346672
0.2223 9.0 81810 0.2146 17265344
0.2639 10.0 90900 0.2104 19184224
0.2016 11.0 99990 0.2138 21102912
0.1812 12.0 109080 0.2102 23021312
0.1955 13.0 118170 0.2082 24938688
0.2231 14.0 127260 0.2090 26857088
0.1629 15.0 136350 0.2134 28775840
0.2237 16.0 145440 0.2109 30693088
0.1881 17.0 154530 0.2137 32612480
0.2269 18.0 163620 0.2165 34530176
0.1694 19.0 172710 0.2177 36447600
0.1498 20.0 181800 0.2176 38366624

Framework versions

  • PEFT 0.17.1
  • Transformers 4.51.3
  • Pytorch 2.9.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
139
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_winogrande_101112_1760638069

Adapter
(2009)
this model