train_winogrande_101112_1760638071

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the winogrande dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0490
  • Num Input Tokens Seen: 38366624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 101112
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.1336 1.0 9090 0.0617 1917952
0.0317 2.0 18180 0.0564 3835840
0.0003 3.0 27270 0.0654 5753152
0.0019 4.0 36360 0.0490 7672000
0.0008 5.0 45450 0.0590 9590080
0.0469 6.0 54540 0.0772 11509088
0.0004 7.0 63630 0.0771 13427712
0.0 8.0 72720 0.0949 15346672
0.0 9.0 81810 0.1089 17265344
0.0 10.0 90900 0.0961 19184224
0.0 11.0 99990 0.1043 21102912
0.0 12.0 109080 0.0872 23021312
0.0 13.0 118170 0.0864 24938688
0.0 14.0 127260 0.1193 26857088
0.0 15.0 136350 0.1188 28775840
0.0 16.0 145440 0.1330 30693088
0.0 17.0 154530 0.1429 32612480
0.0 18.0 163620 0.1453 34530176
0.0 19.0 172710 0.1471 36447600
0.0 20.0 181800 0.1468 38366624

Framework versions

  • PEFT 0.17.1
  • Transformers 4.51.3
  • Pytorch 2.9.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
132
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_winogrande_101112_1760638071

Adapter
(2009)
this model