train_winogrande_1754652171

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the winogrande dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7101
  • Num Input Tokens Seen: 30830624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2283 0.5 4545 0.2313 1541600
0.2302 1.0 9090 0.2314 3081600
0.2308 1.5 13635 0.2313 4623680
0.2309 2.0 18180 0.2324 6165104
0.2314 2.5 22725 0.2314 7706064
0.2335 3.0 27270 0.2313 9248016
0.2233 3.5 31815 0.2326 10789584
0.2319 4.0 36360 0.2312 12330800
0.2292 4.5 40905 0.2312 13871920
0.2294 5.0 45450 0.2317 15413776
0.2339 5.5 49995 0.2313 16954320
0.2283 6.0 54540 0.2313 18496992
0.2334 6.5 59085 0.2312 20039264
0.2323 7.0 63630 0.2312 21579792
0.2355 7.5 68175 0.2312 23122160
0.2328 8.0 72720 0.2313 24664400
0.2313 8.5 77265 0.2309 26207280
0.2305 9.0 81810 0.2306 27747856
0.23 9.5 86355 0.2304 29287888
0.2315 10.0 90900 0.2307 30830624

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_winogrande_1754652171

Adapter
(2081)
this model

Evaluation results