muhtasham's picture
End of training
692331d verified
---
library_name: transformers
language:
- tg
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: whisper-tajik-moar-low-lr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: tg_tj
split: None
args: tg_tj
metrics:
- name: Wer
type: wer
value: 16.43159922928709
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tajik-moar-low-lr
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2667
- Wer: 16.4316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1505 | 1.0 | 704 | 0.3244 | 23.0135 |
| 0.1011 | 2.0 | 1408 | 0.2744 | 18.8362 |
| 0.0635 | 3.0 | 2112 | 0.2646 | 17.0636 |
| 0.0328 | 4.0 | 2816 | 0.2667 | 16.4316 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.4