metadata
			library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9378830544972668
          - name: Recall
            type: recall
            value: 0.9528778189161898
          - name: F1
            type: f1
            value: 0.9453209783788297
          - name: Accuracy
            type: accuracy
            value: 0.9869458998057338
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0591
- Precision: 0.9379
- Recall: 0.9529
- F1: 0.9453
- Accuracy: 0.9869
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | 
|---|---|---|---|---|---|---|---|
| 0.076 | 1.0 | 1756 | 0.0672 | 0.9104 | 0.9369 | 0.9234 | 0.9818 | 
| 0.0342 | 2.0 | 3512 | 0.0689 | 0.9368 | 0.9461 | 0.9415 | 0.9854 | 
| 0.0208 | 3.0 | 5268 | 0.0591 | 0.9379 | 0.9529 | 0.9453 | 0.9869 | 
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
