CardioEmbed-E5-large-v2
Domain-specialized cardiology text embeddings using LoRA-adapted E5-large-v2
Part of a comparative study of 10 embedding architectures for clinical cardiology.
Performance
| Metric | Score |
|---|---|
| Separation Score | 0.284 |
Usage
from transformers import AutoModel, AutoTokenizer
from peft import PeftModel
base_model = AutoModel.from_pretrained("intfloat/e5-large-v2")
tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-large-v2")
model = PeftModel.from_pretrained(base_model, "richardyoung/CardioEmbed-E5-large-v2")
Training
- Training Data: 106,535 cardiology text pairs from medical textbooks
- Method: LoRA fine-tuning (r=16, alpha=32)
- Loss: Multiple Negatives Ranking Loss (InfoNCE)
Citation
@article{young2024comparative,
title={Comparative Analysis of LoRA-Adapted Embedding Models for Clinical Cardiology Text Representation},
author={Young, Richard J and Matthews, Alice M},
journal={arXiv preprint},
year={2024}
}
- Downloads last month
- 16
Model tree for richardyoung/CardioEmbed-E5-large-v2
Base model
intfloat/e5-large-v2