🟣 Green-Guard β€” RoBERTa ESG Category Classifier (v1)

Task: Sentence-level classification for Environmental (E), Social (S), and Governance (G) categories.
Base model: roberta-base, fine-tuned with class-weighted loss to address label imbalance.
Repository: GitHub β†’ Green-Guard Project


πŸ“Š Metrics (Test Set)

Metric Value
Accuracy 0.81
Macro F1 0.81
Weighted F1 0.81

Metrics computed on the same held-out test split (data/processed/splits/)
using reports/category_metrics_v1.json


🧩 Labels

{ "0": "E", "1": "S", "2": "G" }

πŸš€ Quick Inference

You can load and run the model directly:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model_id = "salitahir/roberta-esg-category-green-guard-v1"
tok = AutoTokenizer.from_pretrained(model_id)
mod = AutoModelForSequenceClassification.from_pretrained(model_id).eval()

text = "We invested in renewable energy sources for our operations."
inputs = tok(text, return_tensors="pt", truncation=True)
pred = torch.softmax(mod(**inputs).logits, dim=-1)
label_id = pred.argmax(-1).item()
label = mod.config.id2label[str(label_id)]
print(label, float(pred[0][label_id]))

βœ… Expected output:

E 0.88


🧠 Intended Use

This model acts as Stage 2 in the Green-Guard pipeline β€” categorizing sustainability-related sentences identified by the Relevance Model.


βš–οΈ License

MIT License β€” open for research and commercial reuse with attribution.

Downloads last month
10
Safetensors
Model size
0.1B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for salitahir/roberta-esg-category-green-guard-v1

Finetuned
(2053)
this model