llama-airo-3
Details
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the jondurbin/airoboros-3.2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.8437
 
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
 - train_batch_size: 2
 - eval_batch_size: 2
 - seed: 42
 - gradient_accumulation_steps: 4
 - total_train_batch_size: 8
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_steps: 10
 - num_epochs: 1
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 1.1845 | 0.0 | 1 | 1.1821 | 
| 0.9328 | 0.25 | 114 | 0.9228 | 
| 0.8961 | 0.5 | 228 | 0.8713 | 
| 0.824 | 0.75 | 342 | 0.8437 | 
Framework versions
- PEFT 0.10.0
 - Transformers 4.40.0.dev0
 - Pytorch 2.1.2+cu118
 - Datasets 2.15.0
 - Tokenizers 0.15.0
 
Eval Results
| Benchmark | Model | agieval | gpt4all | bigbench | truthfulqa | Average | 
|---|---|---|---|---|---|---|
| nous | llama-airo-3 | 36.59 | 72.24 | 39.26 | 56.3 | 51.1 | 
| nous | meta-llama/Meta-Llama-3-8B | 31.1 | 69.95 | 36.7 | 43.91 | 45.42 | 
| Benchmark | Model | winogrande | arc | gsm8k | mmlu | truthfulqa | hellaswag | Average | 
|---|---|---|---|---|---|---|---|---|
| openllm | llama-airo-3 | 78.22 | 61.01 | 56.33 | 64.79 | 56.35 | 82.42 | 66.52 | 
| openllm | Meta-Llama-3-8B | 77.58 | 57.51 | 50.87 | 65.04 | 43.93 | 82.09 | 62.84 | 
Detailed Results: https://github.com/saucam/model_evals/tree/main/saucam/llama-airo-3
- Downloads last month
 - 2
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	🙋
			
		Ask for provider support
Model tree for saucam/llama-airo-3
Base model
meta-llama/Meta-Llama-3-8B