YAML Metadata
Error:
"widget" must be an array
Model description
This is an XGBoost model trained to predict daily alcohol consumption of students.
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|---|---|
| memory | |
| steps | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False)), ('xgbregressor', XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=5, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...))] |
| verbose | False |
| onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
| xgbregressor | XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=5, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...) |
| onehotencoder__categories | auto |
| onehotencoder__drop | |
| onehotencoder__dtype | <class 'numpy.float64'> |
| onehotencoder__handle_unknown | ignore |
| onehotencoder__sparse | False |
| xgbregressor__objective | reg:squarederror |
| xgbregressor__base_score | |
| xgbregressor__booster | |
| xgbregressor__callbacks | |
| xgbregressor__colsample_bylevel | |
| xgbregressor__colsample_bynode | |
| xgbregressor__colsample_bytree | |
| xgbregressor__early_stopping_rounds | |
| xgbregressor__enable_categorical | False |
| xgbregressor__eval_metric | |
| xgbregressor__feature_types | |
| xgbregressor__gamma | |
| xgbregressor__gpu_id | |
| xgbregressor__grow_policy | |
| xgbregressor__importance_type | |
| xgbregressor__interaction_constraints | |
| xgbregressor__learning_rate | |
| xgbregressor__max_bin | |
| xgbregressor__max_cat_threshold | |
| xgbregressor__max_cat_to_onehot | |
| xgbregressor__max_delta_step | |
| xgbregressor__max_depth | 5 |
| xgbregressor__max_leaves | |
| xgbregressor__min_child_weight | |
| xgbregressor__missing | nan |
| xgbregressor__monotone_constraints | |
| xgbregressor__n_estimators | 100 |
| xgbregressor__n_jobs | |
| xgbregressor__num_parallel_tree | |
| xgbregressor__predictor | |
| xgbregressor__random_state | |
| xgbregressor__reg_alpha | |
| xgbregressor__reg_lambda | |
| xgbregressor__sampling_method | |
| xgbregressor__scale_pos_weight | |
| xgbregressor__subsample | |
| xgbregressor__tree_method | |
| xgbregressor__validate_parameters | |
| xgbregressor__verbosity |
Model Plot
The model plot is below.
Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])Please rerun this cell to show the HTML repr or trust the notebook.Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])OneHotEncoder(handle_unknown='ignore', sparse=False)
XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, gpu_id=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=5, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,n_estimators=100, n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...)
Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|---|---|
| R squared | 0.382 |
| Mean Squared Error | 0.43055 |
Feature Importance Plot
Explained as: feature importances
XGBoost feature importances; values are numbers 0 <= x <= 1;all values sum to 1.
| Weight | Feature |
|---|---|
| 0.3592 | x26_5 |
| 0.0499 | x26_1 |
| 0.0383 | x26_4 |
| 0.0325 | x23_3 |
| 0.0256 | x28_0 |
| 0.0229 | x30_10 |
| 0.0222 | x8_health |
| 0.0203 | x29_10 |
| 0.0200 | x14_2 |
| 0.0200 | x7_3 |
| 0.0199 | x31_16 |
| 0.0179 | x28_8 |
| 0.0155 | x28_6 |
| 0.0155 | x11_mother |
| 0.0149 | x29_12 |
| 0.0145 | x26_2 |
| 0.0138 | x21_no |
| 0.0112 | x6_2 |
| 0.0098 | x14_0 |
| 0.0092 | x18_no |
| … 161 more … | |
- Downloads last month
- -