SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
 - Base model: intfloat/multilingual-e5-large
 - Maximum Sequence Length: 512 tokens
 - Output Dimensionality: 1024 tokens
 - Similarity Function: Cosine Similarity
 
Model Sources
- Documentation: Sentence Transformers Documentation
 - Repository: Sentence Transformers on GitHub
 - Hugging Face: Sentence Transformers on Hugging Face
 
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/e5-large-neg-v0-bs40-lr1e-6-1000")
# Run inference
sentences = [
    '아야미 ?카가 홍대 스테이라운지에서 개최하는 것은?',
    '▲ 사진= BJ 야하군 제공 일본 유명 AV배우 아야미 ?카(あやみ旬果)가 한국 팬들을 만난다. 아야미 ?카는 오는 7일 오후 홍대 스테이라운지에서 팬미팅을 개최한다. 야마미 ?카는 독보적인 이미지로 일본 뿐만 아니라 한국에서도 많은 팬을 가지고 있다. 이날 팬미팅에는 근황토크 및 게임, 포토타임, 사인회, 선물 증정 시간 등이 예정돼 있어 팬들의 기대감을 고조시켰다. 한편 아야미 ?카의 팬미팅은 19세 이상의 성인을 대상으로 진행되며, 온라인을 통해 티켓을 구매할 수 있다.',
    '일본 첫 단독공연을 앞둔 힙합그룹 MIB(엠아비)가 일본에서 뜨거운 인기를 실감하고 있다. 공연을 하루 앞둔 지난23일, MIB는 일본 도쿄 시부야에 있는 대형레코드 체인점 \'타워레코드\'에서 \'악수회\'를 성황리에 개최했다. \'악수회\' 수시간 전부터 MIB를 보기 위해 300여명의 팬들이 플래카드를 들고 타워레코드로 모여 현지관 계자를 놀라게 했다. 이에 앞서 MIB는 케이팝 전문방송인 \'K-POP LOVERS\'에 출연해 일본 진출 및 첫 단독 공연을 앞둔 소감을 전한 것은 물론, 강남의 칼럼에 소개된 에피소드에 대해 이야기하고 팬들의 궁금증을 풀어주는 시간도 가졌다. 정글엔터테인먼트 관계자는 "K-힙합을 MIB를 통해 일본 음악시장에 전파 할 수 있는 좋은 기회가 될 것이라고 생각한다"며 "향후 타워레코드 외에도 일본 메이저음반 기획사, 음반사와 접촉해 다양한 프로모션을 진행할 것"이라고 말했다. 현지 연예 관계자는 "MIB 멤버 강남이 재일교포라는 점이 현지 팬들에게 큰 관심을 불러일으키고 있는 것 같다. 특히 강남은 타워레코드 온라인 사이트에 격주 목요일마다 칼럼을 연재하고 있는데 이 또한 큰 인기를 모으고 있다"며 MIB의 일본 내 성공 가능성을 예측했다. 한편, MIB는 오늘(24일) 오후 3시 30분부터 하라주쿠에 위치한 아스트로홀에서 일본의 주요 음반 관계자들이 참석한 가운데 총2회에 걸쳐 일본 첫 단독 공연 \'We are M.I.B\'를 개최한다.& lt;연예부>',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 5e-06num_train_epochs: 1warmup_steps: 100bf16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-06weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 100log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | 
|---|---|---|
| 0.0001 | 1 | 1.9307 | 
| 0.0003 | 2 | 1.9013 | 
| 0.0004 | 3 | 1.9678 | 
| 0.0005 | 4 | 1.912 | 
| 0.0007 | 5 | 1.9856 | 
| 0.0008 | 6 | 1.9017 | 
| 0.0009 | 7 | 1.8966 | 
| 0.0011 | 8 | 1.9761 | 
| 0.0012 | 9 | 1.9268 | 
| 0.0013 | 10 | 1.9604 | 
| 0.0015 | 11 | 1.8515 | 
| 0.0016 | 12 | 1.9247 | 
| 0.0017 | 13 | 1.9196 | 
| 0.0019 | 14 | 1.9611 | 
| 0.0020 | 15 | 1.9202 | 
| 0.0021 | 16 | 2.0048 | 
| 0.0023 | 17 | 1.8684 | 
| 0.0024 | 18 | 1.9605 | 
| 0.0025 | 19 | 1.9693 | 
| 0.0027 | 20 | 1.9385 | 
| 0.0028 | 21 | 1.9736 | 
| 0.0029 | 22 | 1.8907 | 
| 0.0030 | 23 | 1.9025 | 
| 0.0032 | 24 | 1.9233 | 
| 0.0033 | 25 | 1.9427 | 
| 0.0034 | 26 | 1.8181 | 
| 0.0036 | 27 | 1.9536 | 
| 0.0037 | 28 | 1.9766 | 
| 0.0038 | 29 | 1.8892 | 
| 0.0040 | 30 | 1.9381 | 
| 0.0041 | 31 | 1.9046 | 
| 0.0042 | 32 | 1.9097 | 
| 0.0044 | 33 | 1.8813 | 
| 0.0045 | 34 | 1.9537 | 
| 0.0046 | 35 | 1.8715 | 
| 0.0048 | 36 | 1.9787 | 
| 0.0049 | 37 | 1.8877 | 
| 0.0050 | 38 | 1.8891 | 
| 0.0052 | 39 | 1.9122 | 
| 0.0053 | 40 | 1.8853 | 
| 0.0054 | 41 | 1.9297 | 
| 0.0056 | 42 | 1.8776 | 
| 0.0057 | 43 | 1.887 | 
| 0.0058 | 44 | 1.9018 | 
| 0.0060 | 45 | 1.8387 | 
| 0.0061 | 46 | 1.8525 | 
| 0.0062 | 47 | 1.919 | 
| 0.0064 | 48 | 1.9223 | 
| 0.0065 | 49 | 1.7887 | 
| 0.0066 | 50 | 1.8343 | 
| 0.0068 | 51 | 1.8631 | 
| 0.0069 | 52 | 1.8391 | 
| 0.0070 | 53 | 1.7403 | 
| 0.0072 | 54 | 1.8625 | 
| 0.0073 | 55 | 1.8766 | 
| 0.0074 | 56 | 1.755 | 
| 0.0076 | 57 | 1.8058 | 
| 0.0077 | 58 | 1.7889 | 
| 0.0078 | 59 | 1.8359 | 
| 0.0080 | 60 | 1.8129 | 
| 0.0081 | 61 | 1.8005 | 
| 0.0082 | 62 | 1.7291 | 
| 0.0084 | 63 | 1.7851 | 
| 0.0085 | 64 | 1.8281 | 
| 0.0086 | 65 | 1.7887 | 
| 0.0088 | 66 | 1.743 | 
| 0.0089 | 67 | 1.7501 | 
| 0.0090 | 68 | 1.7622 | 
| 0.0091 | 69 | 1.8374 | 
| 0.0093 | 70 | 1.7625 | 
| 0.0094 | 71 | 1.6925 | 
| 0.0095 | 72 | 1.8021 | 
| 0.0097 | 73 | 1.7379 | 
| 0.0098 | 74 | 1.652 | 
| 0.0099 | 75 | 1.6583 | 
| 0.0101 | 76 | 1.6557 | 
| 0.0102 | 77 | 1.652 | 
| 0.0103 | 78 | 1.6297 | 
| 0.0105 | 79 | 1.668 | 
| 0.0106 | 80 | 1.7019 | 
| 0.0107 | 81 | 1.6268 | 
| 0.0109 | 82 | 1.5703 | 
| 0.0110 | 83 | 1.6884 | 
| 0.0111 | 84 | 1.7507 | 
| 0.0113 | 85 | 1.5727 | 
| 0.0114 | 86 | 1.6969 | 
| 0.0115 | 87 | 1.6063 | 
| 0.0117 | 88 | 1.5675 | 
| 0.0118 | 89 | 1.5301 | 
| 0.0119 | 90 | 1.5201 | 
| 0.0121 | 91 | 1.5569 | 
| 0.0122 | 92 | 1.5325 | 
| 0.0123 | 93 | 1.5406 | 
| 0.0125 | 94 | 1.4992 | 
| 0.0126 | 95 | 1.4889 | 
| 0.0127 | 96 | 1.4308 | 
| 0.0129 | 97 | 1.3782 | 
| 0.0130 | 98 | 1.4542 | 
| 0.0131 | 99 | 1.4327 | 
| 0.0133 | 100 | 1.4437 | 
| 0.0134 | 101 | 1.3352 | 
| 0.0135 | 102 | 1.3605 | 
| 0.0137 | 103 | 1.3732 | 
| 0.0138 | 104 | 1.3752 | 
| 0.0139 | 105 | 1.324 | 
| 0.0141 | 106 | 1.3317 | 
| 0.0142 | 107 | 1.2643 | 
| 0.0143 | 108 | 1.2754 | 
| 0.0145 | 109 | 1.2622 | 
| 0.0146 | 110 | 1.1565 | 
| 0.0147 | 111 | 1.2645 | 
| 0.0149 | 112 | 1.1257 | 
| 0.0150 | 113 | 1.1826 | 
| 0.0151 | 114 | 1.2016 | 
| 0.0152 | 115 | 1.2099 | 
| 0.0154 | 116 | 1.17 | 
| 0.0155 | 117 | 1.2047 | 
| 0.0156 | 118 | 1.1152 | 
| 0.0158 | 119 | 1.1606 | 
| 0.0159 | 120 | 1.1492 | 
| 0.0160 | 121 | 1.1575 | 
| 0.0162 | 122 | 1.1599 | 
| 0.0163 | 123 | 1.1498 | 
| 0.0164 | 124 | 1.0323 | 
| 0.0166 | 125 | 1.1129 | 
| 0.0167 | 126 | 1.0861 | 
| 0.0168 | 127 | 1.0424 | 
| 0.0170 | 128 | 0.9815 | 
| 0.0171 | 129 | 1.0264 | 
| 0.0172 | 130 | 1.0357 | 
| 0.0174 | 131 | 0.9753 | 
| 0.0175 | 132 | 0.9904 | 
| 0.0176 | 133 | 0.9881 | 
| 0.0178 | 134 | 1.0703 | 
| 0.0179 | 135 | 0.9154 | 
| 0.0180 | 136 | 0.8621 | 
| 0.0182 | 137 | 0.9127 | 
| 0.0183 | 138 | 0.9136 | 
| 0.0184 | 139 | 0.9438 | 
| 0.0186 | 140 | 0.9462 | 
| 0.0187 | 141 | 0.8737 | 
| 0.0188 | 142 | 0.9194 | 
| 0.0190 | 143 | 0.8149 | 
| 0.0191 | 144 | 0.9356 | 
| 0.0192 | 145 | 0.8444 | 
| 0.0194 | 146 | 0.7857 | 
| 0.0195 | 147 | 0.8543 | 
| 0.0196 | 148 | 0.7438 | 
| 0.0198 | 149 | 0.6994 | 
| 0.0199 | 150 | 0.8255 | 
| 0.0200 | 151 | 0.7701 | 
| 0.0202 | 152 | 0.7877 | 
| 0.0203 | 153 | 0.7478 | 
| 0.0204 | 154 | 0.8188 | 
| 0.0206 | 155 | 0.7664 | 
| 0.0207 | 156 | 0.6715 | 
| 0.0208 | 157 | 0.7164 | 
| 0.0210 | 158 | 0.7475 | 
| 0.0211 | 159 | 0.701 | 
| 0.0212 | 160 | 0.6741 | 
| 0.0213 | 161 | 0.7849 | 
| 0.0215 | 162 | 0.6964 | 
| 0.0216 | 163 | 0.6787 | 
| 0.0217 | 164 | 0.6701 | 
| 0.0219 | 165 | 0.6845 | 
| 0.0220 | 166 | 0.7393 | 
| 0.0221 | 167 | 0.6533 | 
| 0.0223 | 168 | 0.7024 | 
| 0.0224 | 169 | 0.6524 | 
| 0.0225 | 170 | 0.6748 | 
| 0.0227 | 171 | 0.6508 | 
| 0.0228 | 172 | 0.5762 | 
| 0.0229 | 173 | 0.6419 | 
| 0.0231 | 174 | 0.5881 | 
| 0.0232 | 175 | 0.612 | 
| 0.0233 | 176 | 0.6294 | 
| 0.0235 | 177 | 0.5756 | 
| 0.0236 | 178 | 0.705 | 
| 0.0237 | 179 | 0.6179 | 
| 0.0239 | 180 | 0.6334 | 
| 0.0240 | 181 | 0.6372 | 
| 0.0241 | 182 | 0.7345 | 
| 0.0243 | 183 | 0.6357 | 
| 0.0244 | 184 | 0.5883 | 
| 0.0245 | 185 | 0.5528 | 
| 0.0247 | 186 | 0.5066 | 
| 0.0248 | 187 | 0.5439 | 
| 0.0249 | 188 | 0.5398 | 
| 0.0251 | 189 | 0.5591 | 
| 0.0252 | 190 | 0.5669 | 
| 0.0253 | 191 | 0.5396 | 
| 0.0255 | 192 | 0.5971 | 
| 0.0256 | 193 | 0.5329 | 
| 0.0257 | 194 | 0.5109 | 
| 0.0259 | 195 | 0.4847 | 
| 0.0260 | 196 | 0.6001 | 
| 0.0261 | 197 | 0.4728 | 
| 0.0263 | 198 | 0.4704 | 
| 0.0264 | 199 | 0.4413 | 
| 0.0265 | 200 | 0.4605 | 
| 0.0267 | 201 | 0.488 | 
| 0.0268 | 202 | 0.5198 | 
| 0.0269 | 203 | 0.5348 | 
| 0.0271 | 204 | 0.5426 | 
| 0.0272 | 205 | 0.4714 | 
| 0.0273 | 206 | 0.524 | 
| 0.0274 | 207 | 0.5083 | 
| 0.0276 | 208 | 0.4022 | 
| 0.0277 | 209 | 0.4506 | 
| 0.0278 | 210 | 0.4665 | 
| 0.0280 | 211 | 0.4332 | 
| 0.0281 | 212 | 0.3997 | 
| 0.0282 | 213 | 0.4713 | 
| 0.0284 | 214 | 0.3748 | 
| 0.0285 | 215 | 0.462 | 
| 0.0286 | 216 | 0.4173 | 
| 0.0288 | 217 | 0.5133 | 
| 0.0289 | 218 | 0.468 | 
| 0.0290 | 219 | 0.4126 | 
| 0.0292 | 220 | 0.3928 | 
| 0.0293 | 221 | 0.4335 | 
| 0.0294 | 222 | 0.4527 | 
| 0.0296 | 223 | 0.4301 | 
| 0.0297 | 224 | 0.4705 | 
| 0.0298 | 225 | 0.415 | 
| 0.0300 | 226 | 0.3935 | 
| 0.0301 | 227 | 0.366 | 
| 0.0302 | 228 | 0.4617 | 
| 0.0304 | 229 | 0.4185 | 
| 0.0305 | 230 | 0.3836 | 
| 0.0306 | 231 | 0.3915 | 
| 0.0308 | 232 | 0.3345 | 
| 0.0309 | 233 | 0.4118 | 
| 0.0310 | 234 | 0.4165 | 
| 0.0312 | 235 | 0.3431 | 
| 0.0313 | 236 | 0.3799 | 
| 0.0314 | 237 | 0.3735 | 
| 0.0316 | 238 | 0.4321 | 
| 0.0317 | 239 | 0.4097 | 
| 0.0318 | 240 | 0.4396 | 
| 0.0320 | 241 | 0.3443 | 
| 0.0321 | 242 | 0.4912 | 
| 0.0322 | 243 | 0.4022 | 
| 0.0324 | 244 | 0.3461 | 
| 0.0325 | 245 | 0.444 | 
| 0.0326 | 246 | 0.4546 | 
| 0.0328 | 247 | 0.4318 | 
| 0.0329 | 248 | 0.3992 | 
| 0.0330 | 249 | 0.3472 | 
| 0.0332 | 250 | 0.396 | 
| 0.0333 | 251 | 0.3796 | 
| 0.0334 | 252 | 0.3963 | 
| 0.0335 | 253 | 0.423 | 
| 0.0337 | 254 | 0.3953 | 
| 0.0338 | 255 | 0.3504 | 
| 0.0339 | 256 | 0.3481 | 
| 0.0341 | 257 | 0.3675 | 
| 0.0342 | 258 | 0.4163 | 
| 0.0343 | 259 | 0.352 | 
| 0.0345 | 260 | 0.401 | 
| 0.0346 | 261 | 0.4511 | 
| 0.0347 | 262 | 0.3748 | 
| 0.0349 | 263 | 0.3149 | 
| 0.0350 | 264 | 0.2681 | 
| 0.0351 | 265 | 0.4258 | 
| 0.0353 | 266 | 0.3183 | 
| 0.0354 | 267 | 0.3674 | 
| 0.0355 | 268 | 0.3169 | 
| 0.0357 | 269 | 0.3665 | 
| 0.0358 | 270 | 0.3627 | 
| 0.0359 | 271 | 0.3394 | 
| 0.0361 | 272 | 0.3814 | 
| 0.0362 | 273 | 0.4377 | 
| 0.0363 | 274 | 0.3149 | 
| 0.0365 | 275 | 0.3458 | 
| 0.0366 | 276 | 0.3835 | 
| 0.0367 | 277 | 0.3858 | 
| 0.0369 | 278 | 0.3735 | 
| 0.0370 | 279 | 0.2908 | 
| 0.0371 | 280 | 0.3302 | 
| 0.0373 | 281 | 0.2657 | 
| 0.0374 | 282 | 0.3283 | 
| 0.0375 | 283 | 0.3472 | 
| 0.0377 | 284 | 0.3701 | 
| 0.0378 | 285 | 0.3984 | 
| 0.0379 | 286 | 0.344 | 
| 0.0381 | 287 | 0.3096 | 
| 0.0382 | 288 | 0.382 | 
| 0.0383 | 289 | 0.2969 | 
| 0.0385 | 290 | 0.3521 | 
| 0.0386 | 291 | 0.3656 | 
| 0.0387 | 292 | 0.2156 | 
| 0.0389 | 293 | 0.2769 | 
| 0.0390 | 294 | 0.348 | 
| 0.0391 | 295 | 0.2789 | 
| 0.0393 | 296 | 0.3394 | 
| 0.0394 | 297 | 0.2985 | 
| 0.0395 | 298 | 0.2845 | 
| 0.0396 | 299 | 0.2794 | 
| 0.0398 | 300 | 0.3404 | 
| 0.0399 | 301 | 0.272 | 
| 0.0400 | 302 | 0.2806 | 
| 0.0402 | 303 | 0.359 | 
| 0.0403 | 304 | 0.2621 | 
| 0.0404 | 305 | 0.2795 | 
| 0.0406 | 306 | 0.2954 | 
| 0.0407 | 307 | 0.3162 | 
| 0.0408 | 308 | 0.401 | 
| 0.0410 | 309 | 0.3367 | 
| 0.0411 | 310 | 0.3762 | 
| 0.0412 | 311 | 0.3056 | 
| 0.0414 | 312 | 0.3379 | 
| 0.0415 | 313 | 0.3156 | 
| 0.0416 | 314 | 0.3274 | 
| 0.0418 | 315 | 0.3386 | 
| 0.0419 | 316 | 0.3434 | 
| 0.0420 | 317 | 0.2867 | 
| 0.0422 | 318 | 0.2996 | 
| 0.0423 | 319 | 0.3022 | 
| 0.0424 | 320 | 0.3414 | 
| 0.0426 | 321 | 0.2923 | 
| 0.0427 | 322 | 0.3175 | 
| 0.0428 | 323 | 0.3304 | 
| 0.0430 | 324 | 0.2774 | 
| 0.0431 | 325 | 0.2385 | 
| 0.0432 | 326 | 0.362 | 
| 0.0434 | 327 | 0.3068 | 
| 0.0435 | 328 | 0.2775 | 
| 0.0436 | 329 | 0.3612 | 
| 0.0438 | 330 | 0.3716 | 
| 0.0439 | 331 | 0.3137 | 
| 0.0440 | 332 | 0.2856 | 
| 0.0442 | 333 | 0.3177 | 
| 0.0443 | 334 | 0.2966 | 
| 0.0444 | 335 | 0.351 | 
| 0.0446 | 336 | 0.2747 | 
| 0.0447 | 337 | 0.334 | 
| 0.0448 | 338 | 0.2556 | 
| 0.0450 | 339 | 0.2811 | 
| 0.0451 | 340 | 0.293 | 
| 0.0452 | 341 | 0.2998 | 
| 0.0454 | 342 | 0.2859 | 
| 0.0455 | 343 | 0.2737 | 
| 0.0456 | 344 | 0.2677 | 
| 0.0457 | 345 | 0.2629 | 
| 0.0459 | 346 | 0.3393 | 
| 0.0460 | 347 | 0.2077 | 
| 0.0461 | 348 | 0.2861 | 
| 0.0463 | 349 | 0.297 | 
| 0.0464 | 350 | 0.2625 | 
| 0.0465 | 351 | 0.2875 | 
| 0.0467 | 352 | 0.3205 | 
| 0.0468 | 353 | 0.2951 | 
| 0.0469 | 354 | 0.3056 | 
| 0.0471 | 355 | 0.3167 | 
| 0.0472 | 356 | 0.3063 | 
| 0.0473 | 357 | 0.2618 | 
| 0.0475 | 358 | 0.2525 | 
| 0.0476 | 359 | 0.2869 | 
| 0.0477 | 360 | 0.268 | 
| 0.0479 | 361 | 0.329 | 
| 0.0480 | 362 | 0.2428 | 
| 0.0481 | 363 | 0.4065 | 
| 0.0483 | 364 | 0.36 | 
| 0.0484 | 365 | 0.3337 | 
| 0.0485 | 366 | 0.2657 | 
| 0.0487 | 367 | 0.3232 | 
| 0.0488 | 368 | 0.2078 | 
| 0.0489 | 369 | 0.3193 | 
| 0.0491 | 370 | 0.3445 | 
| 0.0492 | 371 | 0.3573 | 
| 0.0493 | 372 | 0.2867 | 
| 0.0495 | 373 | 0.2931 | 
| 0.0496 | 374 | 0.2472 | 
| 0.0497 | 375 | 0.3192 | 
| 0.0499 | 376 | 0.3306 | 
| 0.0500 | 377 | 0.2881 | 
| 0.0501 | 378 | 0.2421 | 
| 0.0503 | 379 | 0.2565 | 
| 0.0504 | 380 | 0.2229 | 
| 0.0505 | 381 | 0.2859 | 
| 0.0507 | 382 | 0.259 | 
| 0.0508 | 383 | 0.2778 | 
| 0.0509 | 384 | 0.2952 | 
| 0.0511 | 385 | 0.2943 | 
| 0.0512 | 386 | 0.2375 | 
| 0.0513 | 387 | 0.2742 | 
| 0.0515 | 388 | 0.3092 | 
| 0.0516 | 389 | 0.2887 | 
| 0.0517 | 390 | 0.2456 | 
| 0.0518 | 391 | 0.2789 | 
| 0.0520 | 392 | 0.2996 | 
| 0.0521 | 393 | 0.2245 | 
| 0.0522 | 394 | 0.2964 | 
| 0.0524 | 395 | 0.2965 | 
| 0.0525 | 396 | 0.2602 | 
| 0.0526 | 397 | 0.3065 | 
| 0.0528 | 398 | 0.2225 | 
| 0.0529 | 399 | 0.2502 | 
| 0.0530 | 400 | 0.2535 | 
| 0.0532 | 401 | 0.3445 | 
| 0.0533 | 402 | 0.3139 | 
| 0.0534 | 403 | 0.232 | 
| 0.0536 | 404 | 0.2447 | 
| 0.0537 | 405 | 0.3257 | 
| 0.0538 | 406 | 0.2641 | 
| 0.0540 | 407 | 0.2454 | 
| 0.0541 | 408 | 0.2973 | 
| 0.0542 | 409 | 0.2934 | 
| 0.0544 | 410 | 0.3454 | 
| 0.0545 | 411 | 0.3162 | 
| 0.0546 | 412 | 0.2517 | 
| 0.0548 | 413 | 0.2399 | 
| 0.0549 | 414 | 0.3433 | 
| 0.0550 | 415 | 0.2313 | 
| 0.0552 | 416 | 0.2285 | 
| 0.0553 | 417 | 0.2798 | 
| 0.0554 | 418 | 0.3407 | 
| 0.0556 | 419 | 0.2674 | 
| 0.0557 | 420 | 0.2969 | 
| 0.0558 | 421 | 0.3665 | 
| 0.0560 | 422 | 0.2255 | 
| 0.0561 | 423 | 0.2393 | 
| 0.0562 | 424 | 0.3153 | 
| 0.0564 | 425 | 0.2871 | 
| 0.0565 | 426 | 0.2331 | 
| 0.0566 | 427 | 0.2986 | 
| 0.0568 | 428 | 0.2717 | 
| 0.0569 | 429 | 0.2719 | 
| 0.0570 | 430 | 0.2401 | 
| 0.0572 | 431 | 0.3039 | 
| 0.0573 | 432 | 0.2839 | 
| 0.0574 | 433 | 0.2681 | 
| 0.0576 | 434 | 0.2383 | 
| 0.0577 | 435 | 0.248 | 
| 0.0578 | 436 | 0.2649 | 
| 0.0579 | 437 | 0.2803 | 
| 0.0581 | 438 | 0.2594 | 
| 0.0582 | 439 | 0.2581 | 
| 0.0583 | 440 | 0.1916 | 
| 0.0585 | 441 | 0.2726 | 
| 0.0586 | 442 | 0.3164 | 
| 0.0587 | 443 | 0.2197 | 
| 0.0589 | 444 | 0.2992 | 
| 0.0590 | 445 | 0.2456 | 
| 0.0591 | 446 | 0.2471 | 
| 0.0593 | 447 | 0.2251 | 
| 0.0594 | 448 | 0.2601 | 
| 0.0595 | 449 | 0.2776 | 
| 0.0597 | 450 | 0.2862 | 
| 0.0598 | 451 | 0.2087 | 
| 0.0599 | 452 | 0.2595 | 
| 0.0601 | 453 | 0.2999 | 
| 0.0602 | 454 | 0.2091 | 
| 0.0603 | 455 | 0.2563 | 
| 0.0605 | 456 | 0.2277 | 
| 0.0606 | 457 | 0.2301 | 
| 0.0607 | 458 | 0.2402 | 
| 0.0609 | 459 | 0.2494 | 
| 0.0610 | 460 | 0.2709 | 
| 0.0611 | 461 | 0.286 | 
| 0.0613 | 462 | 0.265 | 
| 0.0614 | 463 | 0.2205 | 
| 0.0615 | 464 | 0.3257 | 
| 0.0617 | 465 | 0.2403 | 
| 0.0618 | 466 | 0.2221 | 
| 0.0619 | 467 | 0.2415 | 
| 0.0621 | 468 | 0.2372 | 
| 0.0622 | 469 | 0.2816 | 
| 0.0623 | 470 | 0.2298 | 
| 0.0625 | 471 | 0.3038 | 
| 0.0626 | 472 | 0.2694 | 
| 0.0627 | 473 | 0.238 | 
| 0.0629 | 474 | 0.2296 | 
| 0.0630 | 475 | 0.2784 | 
| 0.0631 | 476 | 0.2422 | 
| 0.0633 | 477 | 0.2675 | 
| 0.0634 | 478 | 0.2939 | 
| 0.0635 | 479 | 0.2393 | 
| 0.0637 | 480 | 0.2433 | 
| 0.0638 | 481 | 0.268 | 
| 0.0639 | 482 | 0.2381 | 
| 0.0640 | 483 | 0.3069 | 
| 0.0642 | 484 | 0.2794 | 
| 0.0643 | 485 | 0.2628 | 
| 0.0644 | 486 | 0.2404 | 
| 0.0646 | 487 | 0.2309 | 
| 0.0647 | 488 | 0.282 | 
| 0.0648 | 489 | 0.312 | 
| 0.0650 | 490 | 0.1765 | 
| 0.0651 | 491 | 0.2379 | 
| 0.0652 | 492 | 0.2543 | 
| 0.0654 | 493 | 0.2469 | 
| 0.0655 | 494 | 0.2743 | 
| 0.0656 | 495 | 0.2989 | 
| 0.0658 | 496 | 0.2591 | 
| 0.0659 | 497 | 0.2603 | 
| 0.0660 | 498 | 0.2469 | 
| 0.0662 | 499 | 0.2843 | 
| 0.0663 | 500 | 0.3094 | 
| 0.0664 | 501 | 0.308 | 
| 0.0666 | 502 | 0.2748 | 
| 0.0667 | 503 | 0.2872 | 
| 0.0668 | 504 | 0.2911 | 
| 0.0670 | 505 | 0.2638 | 
| 0.0671 | 506 | 0.2492 | 
| 0.0672 | 507 | 0.2105 | 
| 0.0674 | 508 | 0.2691 | 
| 0.0675 | 509 | 0.323 | 
| 0.0676 | 510 | 0.2523 | 
| 0.0678 | 511 | 0.24 | 
| 0.0679 | 512 | 0.23 | 
| 0.0680 | 513 | 0.2539 | 
| 0.0682 | 514 | 0.1826 | 
| 0.0683 | 515 | 0.2862 | 
| 0.0684 | 516 | 0.2399 | 
| 0.0686 | 517 | 0.3351 | 
| 0.0687 | 518 | 0.2342 | 
| 0.0688 | 519 | 0.3024 | 
| 0.0690 | 520 | 0.2693 | 
| 0.0691 | 521 | 0.2057 | 
| 0.0692 | 522 | 0.2194 | 
| 0.0694 | 523 | 0.155 | 
| 0.0695 | 524 | 0.2445 | 
| 0.0696 | 525 | 0.2262 | 
| 0.0698 | 526 | 0.235 | 
| 0.0699 | 527 | 0.2306 | 
| 0.0700 | 528 | 0.2437 | 
| 0.0701 | 529 | 0.2656 | 
| 0.0703 | 530 | 0.2731 | 
| 0.0704 | 531 | 0.281 | 
| 0.0705 | 532 | 0.2421 | 
| 0.0707 | 533 | 0.2406 | 
| 0.0708 | 534 | 0.3476 | 
| 0.0709 | 535 | 0.3076 | 
| 0.0711 | 536 | 0.2794 | 
| 0.0712 | 537 | 0.2168 | 
| 0.0713 | 538 | 0.2138 | 
| 0.0715 | 539 | 0.2067 | 
| 0.0716 | 540 | 0.335 | 
| 0.0717 | 541 | 0.2257 | 
| 0.0719 | 542 | 0.2593 | 
| 0.0720 | 543 | 0.2709 | 
| 0.0721 | 544 | 0.2433 | 
| 0.0723 | 545 | 0.2653 | 
| 0.0724 | 546 | 0.2434 | 
| 0.0725 | 547 | 0.2253 | 
| 0.0727 | 548 | 0.2034 | 
| 0.0728 | 549 | 0.2703 | 
| 0.0729 | 550 | 0.3162 | 
| 0.0731 | 551 | 0.2171 | 
| 0.0732 | 552 | 0.2334 | 
| 0.0733 | 553 | 0.2613 | 
| 0.0735 | 554 | 0.2287 | 
| 0.0736 | 555 | 0.2343 | 
| 0.0737 | 556 | 0.2008 | 
| 0.0739 | 557 | 0.2462 | 
| 0.0740 | 558 | 0.2756 | 
| 0.0741 | 559 | 0.2186 | 
| 0.0743 | 560 | 0.2357 | 
| 0.0744 | 561 | 0.1811 | 
| 0.0745 | 562 | 0.2386 | 
| 0.0747 | 563 | 0.2244 | 
| 0.0748 | 564 | 0.3145 | 
| 0.0749 | 565 | 0.2261 | 
| 0.0751 | 566 | 0.2449 | 
| 0.0752 | 567 | 0.2855 | 
| 0.0753 | 568 | 0.235 | 
| 0.0755 | 569 | 0.2283 | 
| 0.0756 | 570 | 0.2084 | 
| 0.0757 | 571 | 0.2431 | 
| 0.0759 | 572 | 0.2362 | 
| 0.0760 | 573 | 0.2498 | 
| 0.0761 | 574 | 0.2542 | 
| 0.0762 | 575 | 0.2262 | 
| 0.0764 | 576 | 0.2368 | 
| 0.0765 | 577 | 0.2673 | 
| 0.0766 | 578 | 0.2123 | 
| 0.0768 | 579 | 0.2354 | 
| 0.0769 | 580 | 0.2616 | 
| 0.0770 | 581 | 0.2296 | 
| 0.0772 | 582 | 0.2837 | 
| 0.0773 | 583 | 0.256 | 
| 0.0774 | 584 | 0.1973 | 
| 0.0776 | 585 | 0.2311 | 
| 0.0777 | 586 | 0.2219 | 
| 0.0778 | 587 | 0.2318 | 
| 0.0780 | 588 | 0.2215 | 
| 0.0781 | 589 | 0.2474 | 
| 0.0782 | 590 | 0.1652 | 
| 0.0784 | 591 | 0.2297 | 
| 0.0785 | 592 | 0.2132 | 
| 0.0786 | 593 | 0.2405 | 
| 0.0788 | 594 | 0.2012 | 
| 0.0789 | 595 | 0.2628 | 
| 0.0790 | 596 | 0.2305 | 
| 0.0792 | 597 | 0.1794 | 
| 0.0793 | 598 | 0.226 | 
| 0.0794 | 599 | 0.2852 | 
| 0.0796 | 600 | 0.2026 | 
| 0.0797 | 601 | 0.2286 | 
| 0.0798 | 602 | 0.2489 | 
| 0.0800 | 603 | 0.244 | 
| 0.0801 | 604 | 0.1933 | 
| 0.0802 | 605 | 0.2627 | 
| 0.0804 | 606 | 0.2742 | 
| 0.0805 | 607 | 0.2534 | 
| 0.0806 | 608 | 0.2006 | 
| 0.0808 | 609 | 0.2651 | 
| 0.0809 | 610 | 0.2365 | 
| 0.0810 | 611 | 0.2613 | 
| 0.0812 | 612 | 0.214 | 
| 0.0813 | 613 | 0.2631 | 
| 0.0814 | 614 | 0.2123 | 
| 0.0816 | 615 | 0.264 | 
| 0.0817 | 616 | 0.2476 | 
| 0.0818 | 617 | 0.1832 | 
| 0.0820 | 618 | 0.2502 | 
| 0.0821 | 619 | 0.2154 | 
| 0.0822 | 620 | 0.1827 | 
| 0.0823 | 621 | 0.1986 | 
| 0.0825 | 622 | 0.1941 | 
| 0.0826 | 623 | 0.3169 | 
| 0.0827 | 624 | 0.2879 | 
| 0.0829 | 625 | 0.1893 | 
| 0.0830 | 626 | 0.2422 | 
| 0.0831 | 627 | 0.1879 | 
| 0.0833 | 628 | 0.1934 | 
| 0.0834 | 629 | 0.2704 | 
| 0.0835 | 630 | 0.2647 | 
| 0.0837 | 631 | 0.172 | 
| 0.0838 | 632 | 0.2293 | 
| 0.0839 | 633 | 0.2379 | 
| 0.0841 | 634 | 0.2218 | 
| 0.0842 | 635 | 0.1942 | 
| 0.0843 | 636 | 0.2721 | 
| 0.0845 | 637 | 0.225 | 
| 0.0846 | 638 | 0.1792 | 
| 0.0847 | 639 | 0.2242 | 
| 0.0849 | 640 | 0.2294 | 
| 0.0850 | 641 | 0.245 | 
| 0.0851 | 642 | 0.2796 | 
| 0.0853 | 643 | 0.2202 | 
| 0.0854 | 644 | 0.2604 | 
| 0.0855 | 645 | 0.2502 | 
| 0.0857 | 646 | 0.2551 | 
| 0.0858 | 647 | 0.2426 | 
| 0.0859 | 648 | 0.2284 | 
| 0.0861 | 649 | 0.2045 | 
| 0.0862 | 650 | 0.2009 | 
| 0.0863 | 651 | 0.1626 | 
| 0.0865 | 652 | 0.1887 | 
| 0.0866 | 653 | 0.2635 | 
| 0.0867 | 654 | 0.2657 | 
| 0.0869 | 655 | 0.2294 | 
| 0.0870 | 656 | 0.2273 | 
| 0.0871 | 657 | 0.2435 | 
| 0.0873 | 658 | 0.2155 | 
| 0.0874 | 659 | 0.2994 | 
| 0.0875 | 660 | 0.2589 | 
| 0.0877 | 661 | 0.2215 | 
| 0.0878 | 662 | 0.2351 | 
| 0.0879 | 663 | 0.2421 | 
| 0.0881 | 664 | 0.2354 | 
| 0.0882 | 665 | 0.2121 | 
| 0.0883 | 666 | 0.2563 | 
| 0.0884 | 667 | 0.1664 | 
| 0.0886 | 668 | 0.2368 | 
| 0.0887 | 669 | 0.2324 | 
| 0.0888 | 670 | 0.1557 | 
| 0.0890 | 671 | 0.2187 | 
| 0.0891 | 672 | 0.2257 | 
| 0.0892 | 673 | 0.2098 | 
| 0.0894 | 674 | 0.2091 | 
| 0.0895 | 675 | 0.1942 | 
| 0.0896 | 676 | 0.2308 | 
| 0.0898 | 677 | 0.2143 | 
| 0.0899 | 678 | 0.1557 | 
| 0.0900 | 679 | 0.2221 | 
| 0.0902 | 680 | 0.2849 | 
| 0.0903 | 681 | 0.2145 | 
| 0.0904 | 682 | 0.2729 | 
| 0.0906 | 683 | 0.1669 | 
| 0.0907 | 684 | 0.2307 | 
| 0.0908 | 685 | 0.2233 | 
| 0.0910 | 686 | 0.2401 | 
| 0.0911 | 687 | 0.1956 | 
| 0.0912 | 688 | 0.1902 | 
| 0.0914 | 689 | 0.2097 | 
| 0.0915 | 690 | 0.2348 | 
| 0.0916 | 691 | 0.2459 | 
| 0.0918 | 692 | 0.2128 | 
| 0.0919 | 693 | 0.1694 | 
| 0.0920 | 694 | 0.2565 | 
| 0.0922 | 695 | 0.2284 | 
| 0.0923 | 696 | 0.2436 | 
| 0.0924 | 697 | 0.2159 | 
| 0.0926 | 698 | 0.2138 | 
| 0.0927 | 699 | 0.2371 | 
| 0.0928 | 700 | 0.2882 | 
| 0.0930 | 701 | 0.2451 | 
| 0.0931 | 702 | 0.2459 | 
| 0.0932 | 703 | 0.1529 | 
| 0.0934 | 704 | 0.1697 | 
| 0.0935 | 705 | 0.2245 | 
| 0.0936 | 706 | 0.2201 | 
| 0.0938 | 707 | 0.2318 | 
| 0.0939 | 708 | 0.2236 | 
| 0.0940 | 709 | 0.2343 | 
| 0.0942 | 710 | 0.2339 | 
| 0.0943 | 711 | 0.1975 | 
| 0.0944 | 712 | 0.2275 | 
| 0.0945 | 713 | 0.234 | 
| 0.0947 | 714 | 0.259 | 
| 0.0948 | 715 | 0.2044 | 
| 0.0949 | 716 | 0.1714 | 
| 0.0951 | 717 | 0.2841 | 
| 0.0952 | 718 | 0.2509 | 
| 0.0953 | 719 | 0.2107 | 
| 0.0955 | 720 | 0.1995 | 
| 0.0956 | 721 | 0.1877 | 
| 0.0957 | 722 | 0.2648 | 
| 0.0959 | 723 | 0.2381 | 
| 0.0960 | 724 | 0.2349 | 
| 0.0961 | 725 | 0.2148 | 
| 0.0963 | 726 | 0.2292 | 
| 0.0964 | 727 | 0.2327 | 
| 0.0965 | 728 | 0.2198 | 
| 0.0967 | 729 | 0.2125 | 
| 0.0968 | 730 | 0.241 | 
| 0.0969 | 731 | 0.1878 | 
| 0.0971 | 732 | 0.2262 | 
| 0.0972 | 733 | 0.3006 | 
| 0.0973 | 734 | 0.2525 | 
| 0.0975 | 735 | 0.2099 | 
| 0.0976 | 736 | 0.158 | 
| 0.0977 | 737 | 0.2308 | 
| 0.0979 | 738 | 0.2685 | 
| 0.0980 | 739 | 0.2047 | 
| 0.0981 | 740 | 0.1584 | 
| 0.0983 | 741 | 0.2674 | 
| 0.0984 | 742 | 0.2233 | 
| 0.0985 | 743 | 0.2767 | 
| 0.0987 | 744 | 0.2963 | 
| 0.0988 | 745 | 0.203 | 
| 0.0989 | 746 | 0.2725 | 
| 0.0991 | 747 | 0.1873 | 
| 0.0992 | 748 | 0.2225 | 
| 0.0993 | 749 | 0.2706 | 
| 0.0995 | 750 | 0.27 | 
| 0.0996 | 751 | 0.1753 | 
| 0.0997 | 752 | 0.2031 | 
| 0.0999 | 753 | 0.2059 | 
| 0.1000 | 754 | 0.2749 | 
| 0.1001 | 755 | 0.2011 | 
| 0.1003 | 756 | 0.2067 | 
| 0.1004 | 757 | 0.2486 | 
| 0.1005 | 758 | 0.257 | 
| 0.1006 | 759 | 0.236 | 
| 0.1008 | 760 | 0.2361 | 
| 0.1009 | 761 | 0.1818 | 
| 0.1010 | 762 | 0.1799 | 
| 0.1012 | 763 | 0.2408 | 
| 0.1013 | 764 | 0.2526 | 
| 0.1014 | 765 | 0.2234 | 
| 0.1016 | 766 | 0.2055 | 
| 0.1017 | 767 | 0.2068 | 
| 0.1018 | 768 | 0.2621 | 
| 0.1020 | 769 | 0.2182 | 
| 0.1021 | 770 | 0.309 | 
| 0.1022 | 771 | 0.2786 | 
| 0.1024 | 772 | 0.1517 | 
| 0.1025 | 773 | 0.2266 | 
| 0.1026 | 774 | 0.2028 | 
| 0.1028 | 775 | 0.2851 | 
| 0.1029 | 776 | 0.2474 | 
| 0.1030 | 777 | 0.2241 | 
| 0.1032 | 778 | 0.2593 | 
| 0.1033 | 779 | 0.2101 | 
| 0.1034 | 780 | 0.147 | 
| 0.1036 | 781 | 0.231 | 
| 0.1037 | 782 | 0.1734 | 
| 0.1038 | 783 | 0.2107 | 
| 0.1040 | 784 | 0.219 | 
| 0.1041 | 785 | 0.2229 | 
| 0.1042 | 786 | 0.2096 | 
| 0.1044 | 787 | 0.2777 | 
| 0.1045 | 788 | 0.1967 | 
| 0.1046 | 789 | 0.2445 | 
| 0.1048 | 790 | 0.1847 | 
| 0.1049 | 791 | 0.1525 | 
| 0.1050 | 792 | 0.201 | 
| 0.1052 | 793 | 0.181 | 
| 0.1053 | 794 | 0.1737 | 
| 0.1054 | 795 | 0.1893 | 
| 0.1056 | 796 | 0.2084 | 
| 0.1057 | 797 | 0.2367 | 
| 0.1058 | 798 | 0.2266 | 
| 0.1060 | 799 | 0.1858 | 
| 0.1061 | 800 | 0.2138 | 
| 0.1062 | 801 | 0.1704 | 
| 0.1064 | 802 | 0.2377 | 
| 0.1065 | 803 | 0.2107 | 
| 0.1066 | 804 | 0.172 | 
| 0.1067 | 805 | 0.1858 | 
| 0.1069 | 806 | 0.1804 | 
| 0.1070 | 807 | 0.2421 | 
| 0.1071 | 808 | 0.2433 | 
| 0.1073 | 809 | 0.1867 | 
| 0.1074 | 810 | 0.2003 | 
| 0.1075 | 811 | 0.1785 | 
| 0.1077 | 812 | 0.2538 | 
| 0.1078 | 813 | 0.1582 | 
| 0.1079 | 814 | 0.2325 | 
| 0.1081 | 815 | 0.2073 | 
| 0.1082 | 816 | 0.2168 | 
| 0.1083 | 817 | 0.1958 | 
| 0.1085 | 818 | 0.1847 | 
| 0.1086 | 819 | 0.1702 | 
| 0.1087 | 820 | 0.244 | 
| 0.1089 | 821 | 0.2063 | 
| 0.1090 | 822 | 0.1923 | 
| 0.1091 | 823 | 0.2571 | 
| 0.1093 | 824 | 0.2683 | 
| 0.1094 | 825 | 0.2088 | 
| 0.1095 | 826 | 0.3397 | 
| 0.1097 | 827 | 0.2355 | 
| 0.1098 | 828 | 0.2 | 
| 0.1099 | 829 | 0.2657 | 
| 0.1101 | 830 | 0.1738 | 
| 0.1102 | 831 | 0.2237 | 
| 0.1103 | 832 | 0.2023 | 
| 0.1105 | 833 | 0.1805 | 
| 0.1106 | 834 | 0.1801 | 
| 0.1107 | 835 | 0.2095 | 
| 0.1109 | 836 | 0.1901 | 
| 0.1110 | 837 | 0.2139 | 
| 0.1111 | 838 | 0.2157 | 
| 0.1113 | 839 | 0.2403 | 
| 0.1114 | 840 | 0.1356 | 
| 0.1115 | 841 | 0.2247 | 
| 0.1117 | 842 | 0.2338 | 
| 0.1118 | 843 | 0.185 | 
| 0.1119 | 844 | 0.2787 | 
| 0.1121 | 845 | 0.2026 | 
| 0.1122 | 846 | 0.2 | 
| 0.1123 | 847 | 0.2214 | 
| 0.1125 | 848 | 0.1887 | 
| 0.1126 | 849 | 0.2144 | 
| 0.1127 | 850 | 0.2552 | 
| 0.1128 | 851 | 0.2443 | 
| 0.1130 | 852 | 0.1934 | 
| 0.1131 | 853 | 0.1907 | 
| 0.1132 | 854 | 0.2258 | 
| 0.1134 | 855 | 0.212 | 
| 0.1135 | 856 | 0.2151 | 
| 0.1136 | 857 | 0.2173 | 
| 0.1138 | 858 | 0.1976 | 
| 0.1139 | 859 | 0.2427 | 
| 0.1140 | 860 | 0.1984 | 
| 0.1142 | 861 | 0.2138 | 
| 0.1143 | 862 | 0.2225 | 
| 0.1144 | 863 | 0.1992 | 
| 0.1146 | 864 | 0.1738 | 
| 0.1147 | 865 | 0.1853 | 
| 0.1148 | 866 | 0.2464 | 
| 0.1150 | 867 | 0.2278 | 
| 0.1151 | 868 | 0.2248 | 
| 0.1152 | 869 | 0.1515 | 
| 0.1154 | 870 | 0.1649 | 
| 0.1155 | 871 | 0.2059 | 
| 0.1156 | 872 | 0.2325 | 
| 0.1158 | 873 | 0.2582 | 
| 0.1159 | 874 | 0.2337 | 
| 0.1160 | 875 | 0.2171 | 
| 0.1162 | 876 | 0.2003 | 
| 0.1163 | 877 | 0.1839 | 
| 0.1164 | 878 | 0.3144 | 
| 0.1166 | 879 | 0.1853 | 
| 0.1167 | 880 | 0.2039 | 
| 0.1168 | 881 | 0.2692 | 
| 0.1170 | 882 | 0.2438 | 
| 0.1171 | 883 | 0.3044 | 
| 0.1172 | 884 | 0.2862 | 
| 0.1174 | 885 | 0.211 | 
| 0.1175 | 886 | 0.2682 | 
| 0.1176 | 887 | 0.2622 | 
| 0.1178 | 888 | 0.2321 | 
| 0.1179 | 889 | 0.2082 | 
| 0.1180 | 890 | 0.196 | 
| 0.1182 | 891 | 0.2833 | 
| 0.1183 | 892 | 0.202 | 
| 0.1184 | 893 | 0.1902 | 
| 0.1186 | 894 | 0.1899 | 
| 0.1187 | 895 | 0.2158 | 
| 0.1188 | 896 | 0.2342 | 
| 0.1189 | 897 | 0.1907 | 
| 0.1191 | 898 | 0.2876 | 
| 0.1192 | 899 | 0.192 | 
| 0.1193 | 900 | 0.1858 | 
| 0.1195 | 901 | 0.156 | 
| 0.1196 | 902 | 0.2121 | 
| 0.1197 | 903 | 0.2576 | 
| 0.1199 | 904 | 0.2424 | 
| 0.1200 | 905 | 0.1558 | 
| 0.1201 | 906 | 0.246 | 
| 0.1203 | 907 | 0.2339 | 
| 0.1204 | 908 | 0.258 | 
| 0.1205 | 909 | 0.197 | 
| 0.1207 | 910 | 0.212 | 
| 0.1208 | 911 | 0.1962 | 
| 0.1209 | 912 | 0.2636 | 
| 0.1211 | 913 | 0.16 | 
| 0.1212 | 914 | 0.201 | 
| 0.1213 | 915 | 0.237 | 
| 0.1215 | 916 | 0.1827 | 
| 0.1216 | 917 | 0.2384 | 
| 0.1217 | 918 | 0.2102 | 
| 0.1219 | 919 | 0.2366 | 
| 0.1220 | 920 | 0.2186 | 
| 0.1221 | 921 | 0.147 | 
| 0.1223 | 922 | 0.2121 | 
| 0.1224 | 923 | 0.1364 | 
| 0.1225 | 924 | 0.2493 | 
| 0.1227 | 925 | 0.2246 | 
| 0.1228 | 926 | 0.2436 | 
| 0.1229 | 927 | 0.2798 | 
| 0.1231 | 928 | 0.1885 | 
| 0.1232 | 929 | 0.178 | 
| 0.1233 | 930 | 0.2246 | 
| 0.1235 | 931 | 0.3115 | 
| 0.1236 | 932 | 0.2451 | 
| 0.1237 | 933 | 0.1786 | 
| 0.1239 | 934 | 0.159 | 
| 0.1240 | 935 | 0.1896 | 
| 0.1241 | 936 | 0.2422 | 
| 0.1243 | 937 | 0.2497 | 
| 0.1244 | 938 | 0.2339 | 
| 0.1245 | 939 | 0.1685 | 
| 0.1247 | 940 | 0.162 | 
| 0.1248 | 941 | 0.2064 | 
| 0.1249 | 942 | 0.1232 | 
| 0.1250 | 943 | 0.2158 | 
| 0.1252 | 944 | 0.2738 | 
| 0.1253 | 945 | 0.1813 | 
| 0.1254 | 946 | 0.1498 | 
| 0.1256 | 947 | 0.1617 | 
| 0.1257 | 948 | 0.1967 | 
| 0.1258 | 949 | 0.2021 | 
| 0.1260 | 950 | 0.144 | 
| 0.1261 | 951 | 0.2569 | 
| 0.1262 | 952 | 0.2608 | 
| 0.1264 | 953 | 0.1876 | 
| 0.1265 | 954 | 0.1767 | 
| 0.1266 | 955 | 0.1712 | 
| 0.1268 | 956 | 0.2498 | 
| 0.1269 | 957 | 0.2866 | 
| 0.1270 | 958 | 0.1918 | 
| 0.1272 | 959 | 0.2038 | 
| 0.1273 | 960 | 0.1982 | 
| 0.1274 | 961 | 0.2127 | 
| 0.1276 | 962 | 0.2411 | 
| 0.1277 | 963 | 0.2639 | 
| 0.1278 | 964 | 0.2552 | 
| 0.1280 | 965 | 0.2376 | 
| 0.1281 | 966 | 0.2645 | 
| 0.1282 | 967 | 0.1697 | 
| 0.1284 | 968 | 0.1944 | 
| 0.1285 | 969 | 0.1807 | 
| 0.1286 | 970 | 0.2027 | 
| 0.1288 | 971 | 0.219 | 
| 0.1289 | 972 | 0.2317 | 
| 0.1290 | 973 | 0.2104 | 
| 0.1292 | 974 | 0.2191 | 
| 0.1293 | 975 | 0.2081 | 
| 0.1294 | 976 | 0.239 | 
| 0.1296 | 977 | 0.189 | 
| 0.1297 | 978 | 0.1859 | 
| 0.1298 | 979 | 0.2516 | 
| 0.1300 | 980 | 0.217 | 
| 0.1301 | 981 | 0.269 | 
| 0.1302 | 982 | 0.2385 | 
| 0.1304 | 983 | 0.198 | 
| 0.1305 | 984 | 0.2239 | 
| 0.1306 | 985 | 0.2006 | 
| 0.1308 | 986 | 0.3049 | 
| 0.1309 | 987 | 0.1857 | 
| 0.1310 | 988 | 0.2048 | 
| 0.1311 | 989 | 0.2556 | 
| 0.1313 | 990 | 0.1578 | 
| 0.1314 | 991 | 0.2305 | 
| 0.1315 | 992 | 0.2078 | 
| 0.1317 | 993 | 0.2333 | 
| 0.1318 | 994 | 0.1999 | 
| 0.1319 | 995 | 0.2347 | 
| 0.1321 | 996 | 0.2293 | 
| 0.1322 | 997 | 0.1871 | 
| 0.1323 | 998 | 0.1855 | 
| 0.1325 | 999 | 0.1786 | 
| 0.1326 | 1000 | 0.181 | 
Framework Versions
- Python: 3.10.12
 - Sentence Transformers: 3.2.1
 - Transformers: 4.44.2
 - PyTorch: 2.3.1+cu121
 - Accelerate: 1.1.1
 - Datasets: 2.21.0
 - Tokenizers: 0.19.1
 
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
- Downloads last month
 - 1
 
Model tree for seongil-dn/e5-large-neg-v0-bs40-lr1e-6-1000
Base model
intfloat/multilingual-e5-large