metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: modernbert-conll-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: None
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9358846918489065
- name: Recall
type: recall
value: 0.9506900033658701
- name: F1
type: f1
value: 0.943229253631658
- name: Accuracy
type: accuracy
value: 0.9879263507395111
modernbert-conll-ner
This model is a fine-tuned version of google-bert/bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0649
- Precision: 0.9359
- Recall: 0.9507
- F1: 0.9432
- Accuracy: 0.9879
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.023 | 1.0 | 1756 | 0.0683 | 0.9201 | 0.9416 | 0.9307 | 0.9859 |
| 0.0222 | 2.0 | 3512 | 0.0614 | 0.9345 | 0.9514 | 0.9429 | 0.9874 |
| 0.0097 | 3.0 | 5268 | 0.0649 | 0.9359 | 0.9507 | 0.9432 | 0.9879 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0