This model is uncensored version of LiquidAI/LFM-2-2.6B.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
id = "sirev/LFM2-2.6B-Uncensored-X64"
tokenizer = AutoTokenizer.from_pretrained(id)
model = AutoModelForCausalLM.from_pretrained(id).to(device)
messages = [
{"role": "user", "content": "Your message here..."}
]
user = messages[0]['content']
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device)
print(f"User: {user}")
outputs = model.generate(**inputs, temperature=0.3, do_sample=True, repetition_penalty=1.2, max_new_tokens=2048)
print(f"AI: {tokenizer.decode(outputs[0][inputs['input_ids'].shape[-1]:], skip_special_tokens=True)}")
Chat Format:
<|startoftext|><|im_start|>system
You are a helpful assistant trained by Liquid AI.<|im_end|>
<|im_start|>user
What is C. elegans?<|im_end|>
<|im_start|>assistant
It's a tiny nematode that lives in temperate soil environments.<|im_end|>
For reasoning output, change:
"<|im_start|>assistant" to
"<|im_start|>assistant<think>"
These are benchmark results from the EleutherAl/Im-evaluation-harness. The original model was benchmarked with dtype float16, which may cause performance degradation.
| Benchmark (0-shot) | LFM2-2.6B-Uncensored-X64 | LiquidAI/LFM2-2.6B |
|---|---|---|
| ARC-Challenge | 45.39 % | 44.71 % |
| ARC-Easy | 58.80 % | 56.36 % |
| HellaSwag | 62.27 % | 59.71 % |
| MMLU | 63.03 % | 62.68 % |
- Downloads last month
- 13