Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
app.py
|
| 3 |
This script provides the Gradio web interface to run the evaluation.
|
| 4 |
-
This version
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
@@ -10,6 +10,8 @@ import gradio as gr
|
|
| 10 |
import requests
|
| 11 |
import pandas as pd
|
| 12 |
from urllib.parse import urlparse
|
|
|
|
|
|
|
| 13 |
|
| 14 |
from agent import create_agent_executor
|
| 15 |
|
|
@@ -24,74 +26,130 @@ def parse_final_answer(agent_response: str) -> str:
|
|
| 24 |
if lines: return lines[-1].strip()
|
| 25 |
return "Could not parse a final answer."
|
| 26 |
|
| 27 |
-
def
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
if
|
| 36 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
if any(ext in url_lower for ext in ['.mp4', '.avi', '.mov', '.wmv', '.flv', '.webm']):
|
| 42 |
-
return "video"
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
#
|
| 49 |
try:
|
| 50 |
-
|
|
|
|
| 51 |
content_type = response.headers.get('content-type', '').lower()
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
if
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
pass
|
| 61 |
|
| 62 |
-
return "unknown"
|
| 63 |
|
| 64 |
-
def
|
| 65 |
-
"""
|
| 66 |
-
|
|
|
|
| 67 |
if not file_url:
|
| 68 |
-
return question_text
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
if file_type == "image":
|
| 73 |
-
return f"""{question_text}
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
INSTRUCTION: There is a YouTube video attached to this question. You MUST use the 'process_youtube_video' tool to analyze this video before answering the question."""
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
-
INSTRUCTION: There is a file attachment. Analyze the URL and use the appropriate tool to process this content before answering the question."""
|
| 95 |
|
| 96 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 97 |
"""
|
|
@@ -112,7 +170,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 112 |
# 1. Instantiate Agent
|
| 113 |
print("Initializing your custom agent...")
|
| 114 |
try:
|
| 115 |
-
agent_executor = create_agent_executor(provider="
|
| 116 |
except Exception as e:
|
| 117 |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
|
| 118 |
|
|
@@ -141,18 +199,22 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 141 |
# Get file URL if it exists
|
| 142 |
file_url = item.get("file_url")
|
| 143 |
|
| 144 |
-
# Create
|
| 145 |
-
|
| 146 |
|
| 147 |
if file_url:
|
| 148 |
-
file_type =
|
| 149 |
-
print(f"File
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
print(f"
|
| 152 |
|
| 153 |
try:
|
| 154 |
-
# Pass the
|
| 155 |
-
result = agent_executor.invoke({"messages": [("user",
|
| 156 |
|
| 157 |
raw_answer = result['messages'][-1].content
|
| 158 |
submitted_answer = parse_final_answer(raw_answer)
|
|
@@ -165,7 +227,8 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 165 |
"Task ID": task_id,
|
| 166 |
"Question": question_text,
|
| 167 |
"File URL": file_url or "None",
|
| 168 |
-
"File Type":
|
|
|
|
| 169 |
"Submitted Answer": submitted_answer
|
| 170 |
})
|
| 171 |
|
|
@@ -177,7 +240,8 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 177 |
"Task ID": task_id,
|
| 178 |
"Question": question_text,
|
| 179 |
"File URL": file_url or "None",
|
| 180 |
-
"File Type":
|
|
|
|
| 181 |
"Submitted Answer": error_msg
|
| 182 |
})
|
| 183 |
|
|
@@ -201,9 +265,9 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 201 |
return status_message, pd.DataFrame(results_log)
|
| 202 |
|
| 203 |
# --- Gradio UI ---
|
| 204 |
-
with gr.Blocks(title="
|
| 205 |
-
gr.Markdown("#
|
| 206 |
-
gr.Markdown("This agent can process images
|
| 207 |
|
| 208 |
gr.LoginButton()
|
| 209 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
|
@@ -212,11 +276,11 @@ with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
|
|
| 212 |
label="Questions and Agent Answers",
|
| 213 |
wrap=True,
|
| 214 |
row_count=10,
|
| 215 |
-
column_widths=[80, 200,
|
| 216 |
)
|
| 217 |
|
| 218 |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
| 219 |
|
| 220 |
if __name__ == "__main__":
|
| 221 |
-
print("\n" + "-"*30 + "
|
| 222 |
demo.launch()
|
|
|
|
| 1 |
"""
|
| 2 |
app.py
|
| 3 |
This script provides the Gradio web interface to run the evaluation.
|
| 4 |
+
This version focuses on robust image detection and processing.
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
|
|
| 10 |
import requests
|
| 11 |
import pandas as pd
|
| 12 |
from urllib.parse import urlparse
|
| 13 |
+
import mimetypes
|
| 14 |
+
from typing import Optional, Tuple
|
| 15 |
|
| 16 |
from agent import create_agent_executor
|
| 17 |
|
|
|
|
| 26 |
if lines: return lines[-1].strip()
|
| 27 |
return "Could not parse a final answer."
|
| 28 |
|
| 29 |
+
def detect_file_type_robust(url: str) -> Tuple[str, dict]:
|
| 30 |
+
"""
|
| 31 |
+
Robust file type detection with multiple validation methods.
|
| 32 |
+
Returns (file_type, metadata_dict)
|
| 33 |
+
"""
|
| 34 |
+
if not url or not url.strip():
|
| 35 |
+
return "unknown", {"error": "Empty URL"}
|
| 36 |
|
| 37 |
+
url = url.strip()
|
| 38 |
+
metadata = {"original_url": url}
|
| 39 |
|
| 40 |
+
# Normalize URL
|
| 41 |
+
if not url.startswith(('http://', 'https://')):
|
| 42 |
+
return "unknown", {"error": "Invalid URL format - must start with http/https"}
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
parsed = urlparse(url)
|
| 46 |
+
metadata["domain"] = parsed.netloc
|
| 47 |
+
metadata["path"] = parsed.path
|
| 48 |
+
except Exception as e:
|
| 49 |
+
return "unknown", {"error": f"URL parsing failed: {e}"}
|
| 50 |
|
| 51 |
+
# Method 1: File extension analysis
|
| 52 |
+
url_lower = url.lower()
|
| 53 |
+
image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.svg', '.tiff', '.ico'}
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Check for image extensions
|
| 56 |
+
for ext in image_extensions:
|
| 57 |
+
if url_lower.endswith(ext) or ext in url_lower.split('?')[0]: # Handle query params
|
| 58 |
+
metadata["detection_method"] = "file_extension"
|
| 59 |
+
metadata["extension"] = ext
|
| 60 |
+
return "image", metadata
|
| 61 |
|
| 62 |
+
# Method 2: Content-Type header check
|
| 63 |
try:
|
| 64 |
+
print(f"Checking content type for: {url}")
|
| 65 |
+
response = requests.head(url, timeout=10, allow_redirects=True)
|
| 66 |
content_type = response.headers.get('content-type', '').lower()
|
| 67 |
+
metadata["content_type"] = content_type
|
| 68 |
+
metadata["status_code"] = response.status_code
|
| 69 |
|
| 70 |
+
if response.status_code == 200:
|
| 71 |
+
if any(img_type in content_type for img_type in ['image/', 'image/jpeg', 'image/png', 'image/gif', 'image/webp']):
|
| 72 |
+
metadata["detection_method"] = "content_type"
|
| 73 |
+
return "image", metadata
|
| 74 |
+
else:
|
| 75 |
+
metadata["error"] = f"HTTP {response.status_code}"
|
| 76 |
+
|
| 77 |
+
except requests.RequestException as e:
|
| 78 |
+
metadata["error"] = f"Network error: {e}"
|
| 79 |
+
print(f"Network error checking {url}: {e}")
|
| 80 |
+
|
| 81 |
+
# Method 3: Domain-based detection for common image hosts
|
| 82 |
+
image_domains = {
|
| 83 |
+
'imgur.com', 'i.imgur.com',
|
| 84 |
+
'cdn.discordapp.com', 'media.discordapp.net',
|
| 85 |
+
'pbs.twimg.com', 'abs.twimg.com',
|
| 86 |
+
'i.redd.it', 'preview.redd.it',
|
| 87 |
+
'images.unsplash.com',
|
| 88 |
+
'via.placeholder.com',
|
| 89 |
+
'picsum.photos'
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
domain_lower = metadata.get("domain", "").lower()
|
| 93 |
+
if any(img_domain in domain_lower for img_domain in image_domains):
|
| 94 |
+
metadata["detection_method"] = "domain_based"
|
| 95 |
+
return "image", metadata
|
| 96 |
+
|
| 97 |
+
# Method 4: Guess from MIME types
|
| 98 |
+
try:
|
| 99 |
+
mime_type, _ = mimetypes.guess_type(url)
|
| 100 |
+
if mime_type and mime_type.startswith('image/'):
|
| 101 |
+
metadata["detection_method"] = "mime_guess"
|
| 102 |
+
metadata["mime_type"] = mime_type
|
| 103 |
+
return "image", metadata
|
| 104 |
+
except Exception:
|
| 105 |
pass
|
| 106 |
|
| 107 |
+
return "unknown", metadata
|
| 108 |
|
| 109 |
+
def create_structured_prompt(question_text: str, file_url: str = None) -> str:
|
| 110 |
+
"""
|
| 111 |
+
Create a structured prompt that provides clear task analysis for the agent.
|
| 112 |
+
"""
|
| 113 |
if not file_url:
|
| 114 |
+
return f"""TASK: {question_text}
|
| 115 |
+
|
| 116 |
+
ANALYSIS: This is a text-only question with no attachments.
|
| 117 |
+
APPROACH: Use available tools (web search, Wikipedia, etc.) as needed to answer accurately."""
|
| 118 |
+
|
| 119 |
+
file_type, metadata = detect_file_type_robust(file_url)
|
| 120 |
|
| 121 |
if file_type == "image":
|
| 122 |
+
return f"""TASK: {question_text}
|
| 123 |
|
| 124 |
+
ATTACHMENT ANALYSIS:
|
| 125 |
+
- Type: Image file detected
|
| 126 |
+
- URL: {file_url}
|
| 127 |
+
- Detection method: {metadata.get('detection_method', 'unknown')}
|
| 128 |
+
- Metadata: {metadata}
|
| 129 |
|
| 130 |
+
REASONING REQUIRED:
|
| 131 |
+
1. This question involves an image that needs to be analyzed
|
| 132 |
+
2. You must examine the image content to answer the question
|
| 133 |
+
3. The image URL should be processed directly by your vision capabilities
|
| 134 |
|
| 135 |
+
APPROACH: Process the image URL directly with your vision model, then provide a comprehensive answer based on what you see."""
|
|
|
|
| 136 |
|
| 137 |
+
else:
|
| 138 |
+
error_info = metadata.get('error', 'Unknown file type')
|
| 139 |
+
return f"""TASK: {question_text}
|
| 140 |
|
| 141 |
+
ATTACHMENT ANALYSIS:
|
| 142 |
+
- URL: {file_url}
|
| 143 |
+
- Type: Could not identify as supported file type
|
| 144 |
+
- Error: {error_info}
|
| 145 |
+
- Metadata: {metadata}
|
| 146 |
|
| 147 |
+
REASONING REQUIRED:
|
| 148 |
+
1. There is an attachment but it's not a recognized image format
|
| 149 |
+
2. You should attempt to process it as a regular web resource
|
| 150 |
+
3. Use web search or other tools to gather information about the URL content
|
| 151 |
|
| 152 |
+
APPROACH: Use web search or other available tools to gather information about this resource."""
|
|
|
|
| 153 |
|
| 154 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 155 |
"""
|
|
|
|
| 170 |
# 1. Instantiate Agent
|
| 171 |
print("Initializing your custom agent...")
|
| 172 |
try:
|
| 173 |
+
agent_executor = create_agent_executor(provider="groq")
|
| 174 |
except Exception as e:
|
| 175 |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
|
| 176 |
|
|
|
|
| 199 |
# Get file URL if it exists
|
| 200 |
file_url = item.get("file_url")
|
| 201 |
|
| 202 |
+
# Create structured prompt with robust file analysis
|
| 203 |
+
structured_prompt = create_structured_prompt(question_text, file_url)
|
| 204 |
|
| 205 |
if file_url:
|
| 206 |
+
file_type, metadata = detect_file_type_robust(file_url)
|
| 207 |
+
print(f"File analysis: {file_url}")
|
| 208 |
+
print(f" - Type: {file_type}")
|
| 209 |
+
print(f" - Detection method: {metadata.get('detection_method', 'unknown')}")
|
| 210 |
+
if metadata.get('error'):
|
| 211 |
+
print(f" - Error: {metadata['error']}")
|
| 212 |
|
| 213 |
+
print(f"Structured Prompt for Agent:\n{structured_prompt}")
|
| 214 |
|
| 215 |
try:
|
| 216 |
+
# Pass the structured prompt to the agent
|
| 217 |
+
result = agent_executor.invoke({"messages": [("user", structured_prompt)]})
|
| 218 |
|
| 219 |
raw_answer = result['messages'][-1].content
|
| 220 |
submitted_answer = parse_final_answer(raw_answer)
|
|
|
|
| 227 |
"Task ID": task_id,
|
| 228 |
"Question": question_text,
|
| 229 |
"File URL": file_url or "None",
|
| 230 |
+
"File Type": detect_file_type_robust(file_url)[0] if file_url else "None",
|
| 231 |
+
"Detection Method": detect_file_type_robust(file_url)[1].get('detection_method', 'N/A') if file_url else "N/A",
|
| 232 |
"Submitted Answer": submitted_answer
|
| 233 |
})
|
| 234 |
|
|
|
|
| 240 |
"Task ID": task_id,
|
| 241 |
"Question": question_text,
|
| 242 |
"File URL": file_url or "None",
|
| 243 |
+
"File Type": detect_file_type_robust(file_url)[0] if file_url else "None",
|
| 244 |
+
"Detection Method": "Error",
|
| 245 |
"Submitted Answer": error_msg
|
| 246 |
})
|
| 247 |
|
|
|
|
| 265 |
return status_message, pd.DataFrame(results_log)
|
| 266 |
|
| 267 |
# --- Gradio UI ---
|
| 268 |
+
with gr.Blocks(title="Image-Capable Agent Evaluation") as demo:
|
| 269 |
+
gr.Markdown("# Image-Capable Agent Evaluation Runner")
|
| 270 |
+
gr.Markdown("This agent can process images and perform web searches using Groq's vision-capable models.")
|
| 271 |
|
| 272 |
gr.LoginButton()
|
| 273 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
|
|
|
| 276 |
label="Questions and Agent Answers",
|
| 277 |
wrap=True,
|
| 278 |
row_count=10,
|
| 279 |
+
column_widths=[80, 200, 120, 100, 80, 200]
|
| 280 |
)
|
| 281 |
|
| 282 |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
| 283 |
|
| 284 |
if __name__ == "__main__":
|
| 285 |
+
print("\n" + "-"*30 + " Image Agent App Starting " + "-"*30)
|
| 286 |
demo.launch()
|