File size: 6,739 Bytes
0d5ac71
dc9d63b
 
2dd4294
dc9d63b
 
 
0d5ac71
 
 
dc9d63b
2dd4294
 
dc9d63b
2dd4294
dc9d63b
 
2dd4294
dc9d63b
 
 
 
2dd4294
 
 
 
 
 
 
dc9d63b
 
2dd4294
 
 
0d5ac71
9fa019c
2dd4294
 
9fa019c
 
2dd4294
9fa019c
2dd4294
9fa019c
 
dc9d63b
 
2dd4294
 
 
 
 
 
 
 
dc9d63b
 
 
 
2dd4294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9d63b
9fa019c
 
 
ec83815
dc9d63b
c8dd6f4
dc9d63b
 
 
 
 
 
9fa019c
dc9d63b
 
 
0d5ac71
dc9d63b
 
 
 
 
ec83815
dc9d63b
2dd4294
 
 
dc9d63b
2dd4294
 
dc9d63b
2dd4294
 
dc9d63b
ec83815
2dd4294
dc9d63b
 
 
c8dd6f4
 
 
 
 
dc9d63b
 
ec83815
dc9d63b
 
 
2dd4294
dc9d63b
 
2dd4294
dc9d63b
 
2dd4294
 
 
dc9d63b
2dd4294
 
 
dc9d63b
2dd4294
 
dc9d63b
2dd4294
 
 
 
 
dc9d63b
ec83815
2dd4294
 
 
dc9d63b
 
c8dd6f4
 
 
 
dc9d63b
 
 
2dd4294
 
 
dc9d63b
ec83815
2dd4294
c8dd6f4
dc9d63b
 
 
ec83815
dc9d63b
 
 
 
 
 
2dd4294
 
 
 
 
 
dc9d63b
 
 
 
 
2dd4294
 
 
dc9d63b
2dd4294
dc9d63b
2dd4294
 
 
 
 
 
 
 
 
dc9d63b
 
0d5ac71
2dd4294
 
0d5ac71
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import asyncio
import json
import os
from typing import Any, List, Dict

import mcp.types as types
from mcp import CreateMessageResult
from mcp.server import Server
from mcp.server.stdio import stdio_server

from ourllm import genratequestionnaire, gradeanswers
from database_module import init_db
from database_module import get_all_models_handler, search_models_handler

# Initialize data directory and database
DATA_DIR = "data"
os.makedirs(DATA_DIR, exist_ok=True)
init_db()

app = Server("mcp-drift-server")


# === Sampling Helper ===
async def sample(messages: List[types.SamplingMessage], max_tokens: int = 300) -> CreateMessageResult:
    return await app.request_context.session.create_message(
        messages=messages,
        max_tokens=max_tokens,
        temperature=0.7,
    )


# === Baseline File Helpers ===
def get_baseline_path(model_name: str) -> str:
    return os.path.join(DATA_DIR, f"{model_name}_baseline.json")


def get_response_path(model_name: str) -> str:
    return os.path.join(DATA_DIR, f"{model_name}_latest.json")


# === Tool Manifest ===
@app.list_tools()
async def list_tools() -> List[types.Tool]:
    return [
        types.Tool(
            name="run_initial_diagnostics",
            description="Generate and store baseline diagnostics for a connected LLM.",
            inputSchema={
                "type": "object",
                "properties": {
                    "model": {"type": "string", "description": "The name of the model to run diagnostics on"},
                    "model_capabilities": {"type": "string", "description": "Full description of the model's capabilities"}
                },
                "required": ["model", "model_capabilities"]
            },
        ),
        types.Tool(
            name="check_drift",
            description="Re-run diagnostics and compare to baseline for drift scoring.",
            inputSchema={
                "type": "object",
                "properties": {"model": {"type": "string", "description": "The name of the model to run diagnostics on"}},
                "required": ["model"]
            },
        ),
        types.Tool(
            name="get_all_models",
            description="Retrieve all registered models from the database.",
            inputSchema={"type": "object", "properties": {}, "required": []}
        ),
        types.Tool(
            name="search_models",
            description="Search registered models by name.",
            inputSchema={
                "type": "object",
                "properties": {"query": {"type": "string", "description": "Substring to match model names against"}},
                "required": ["query"]
            }
        ),
    ]



# === Sampling Wrapper ===
async def sample(messages: list[types.SamplingMessage], max_tokens=600) -> CreateMessageResult:
    return await app.request_context.session.create_message(
        messages=messages,
        max_tokens=max_tokens,
        temperature=0.7
    )


# === Baseline File Paths ===
def get_baseline_path(model_name):
    return os.path.join(DATA_DIR, f"{model_name}_baseline.json")


def get_response_path(model_name):
    return os.path.join(DATA_DIR, f"{model_name}_latest.json")



# === Core Logic ===
async def run_initial_diagnostics(arguments: Dict[str, Any]) -> List[types.TextContent]:
    model = arguments["model"]
    caps  = arguments["model_capabilities"]

    # 1. Generate questionnaire
    questions = await genratequestionnaire(model, caps)

    # 2. Ask the target LLM (client)
    answers = await sample(questions)


    # 3. Persist baseline

    # 1. Ask the server's internal LLM to generate a questionnaire

    questions = genratequestionnaire(model, arguments["model_capabilities"])  # Server-side trusted LLM
    answers = []
    for q in questions:
        a = await sample([q])
        answers.append(a)

    # 3. Save Q/A pair

    with open(get_baseline_path(model), "w") as f:
        json.dump({
            "questions": [m.content.text for m in questions],
            "answers":   [m.content.text for m in answers]
        }, f, indent=2)

    return [types.TextContent(type="text", text=f"βœ… Baseline stored for model: {model}")]


async def check_drift(arguments: Dict[str, Any]) -> List[types.TextContent]:
    model     = arguments["model"]
    base_path = get_baseline_path(model)

    # Ensure baseline exists
    if not os.path.exists(base_path):
        return [types.TextContent(type="text", text=f"❌ No baseline for model: {model}")]

    # Load questions + old answers
    with open(base_path) as f:
        data = json.load(f)
    questions   = [
        types.SamplingMessage(role="user", content=types.TextContent(type="text", text=q))
        for q in data["questions"]
    ]
    old_answers = data["answers"]


    # 1. Get fresh answers
    new_msgs    = await sample(questions)
    new_answers = [m.content.text for m in new_msgs]

    # 1. Ask the model again
    new_answers_msgs = []
    for q in questions:
        a = await sample([q])
        new_answers_msgs.append(a)
    new_answers = [m.content.text for m in new_answers_msgs]


    # 2. Grade for drift
    grading     = await gradeanswers(old_answers, new_answers)
    drift_score = grading[0].content.text.strip()


    # 3. Save latest
    grading_response = gradeanswers(old_answers, new_answers)
    drift_score = grading_response[0].content.text.strip()

    # 3. Save the response

    with open(get_response_path(model), "w") as f:
        json.dump({
            "new_answers": new_answers,
            "drift_score": drift_score
        }, f, indent=2)

    # 4. Alert threshold
    try:
        score_val = float(drift_score)
        alert     = "🚨 Significant drift!" if score_val > 50 else "βœ… Drift OK"
    except ValueError:
        alert = "⚠️ Drift score not numeric"

    return [
        types.TextContent(type="text", text=f"Drift score for {model}: {drift_score}"),
        types.TextContent(type="text", text=alert)
    ]


# === Dispatcher ===
@app.call_tool()
async def dispatch_tool(name: str, arguments: Dict[str, Any] | None = None):
    if name == "run_initial_diagnostics":
        return await run_initial_diagnostics(arguments or {})
    if name == "check_drift":
        return await check_drift(arguments or {})
    if name == "get_all_models":
        return await get_all_models_handler()
    if name == "search_models":
        return await search_models_handler(arguments or {})
    raise ValueError(f"Unknown tool: {name}")


# === Entrypoint ===
async def main():
    async with stdio_server() as (reader, writer):
        await app.run(reader, writer, app.create_initialization_options())


if __name__ == "__main__":
    asyncio.run(main())