drift-detector / server.py
HarshBhati's picture
integrated db.py with server.py
ec83815
raw
history blame
6.74 kB
import asyncio
import json
import os
from typing import Any, List, Dict
import mcp.types as types
from mcp import CreateMessageResult
from mcp.server import Server
from mcp.server.stdio import stdio_server
from ourllm import genratequestionnaire, gradeanswers
from database_module import init_db
from database_module import get_all_models_handler, search_models_handler
# Initialize data directory and database
DATA_DIR = "data"
os.makedirs(DATA_DIR, exist_ok=True)
init_db()
app = Server("mcp-drift-server")
# === Sampling Helper ===
async def sample(messages: List[types.SamplingMessage], max_tokens: int = 300) -> CreateMessageResult:
return await app.request_context.session.create_message(
messages=messages,
max_tokens=max_tokens,
temperature=0.7,
)
# === Baseline File Helpers ===
def get_baseline_path(model_name: str) -> str:
return os.path.join(DATA_DIR, f"{model_name}_baseline.json")
def get_response_path(model_name: str) -> str:
return os.path.join(DATA_DIR, f"{model_name}_latest.json")
# === Tool Manifest ===
@app.list_tools()
async def list_tools() -> List[types.Tool]:
return [
types.Tool(
name="run_initial_diagnostics",
description="Generate and store baseline diagnostics for a connected LLM.",
inputSchema={
"type": "object",
"properties": {
"model": {"type": "string", "description": "The name of the model to run diagnostics on"},
"model_capabilities": {"type": "string", "description": "Full description of the model's capabilities"}
},
"required": ["model", "model_capabilities"]
},
),
types.Tool(
name="check_drift",
description="Re-run diagnostics and compare to baseline for drift scoring.",
inputSchema={
"type": "object",
"properties": {"model": {"type": "string", "description": "The name of the model to run diagnostics on"}},
"required": ["model"]
},
),
types.Tool(
name="get_all_models",
description="Retrieve all registered models from the database.",
inputSchema={"type": "object", "properties": {}, "required": []}
),
types.Tool(
name="search_models",
description="Search registered models by name.",
inputSchema={
"type": "object",
"properties": {"query": {"type": "string", "description": "Substring to match model names against"}},
"required": ["query"]
}
),
]
# === Sampling Wrapper ===
async def sample(messages: list[types.SamplingMessage], max_tokens=600) -> CreateMessageResult:
return await app.request_context.session.create_message(
messages=messages,
max_tokens=max_tokens,
temperature=0.7
)
# === Baseline File Paths ===
def get_baseline_path(model_name):
return os.path.join(DATA_DIR, f"{model_name}_baseline.json")
def get_response_path(model_name):
return os.path.join(DATA_DIR, f"{model_name}_latest.json")
# === Core Logic ===
async def run_initial_diagnostics(arguments: Dict[str, Any]) -> List[types.TextContent]:
model = arguments["model"]
caps = arguments["model_capabilities"]
# 1. Generate questionnaire
questions = await genratequestionnaire(model, caps)
# 2. Ask the target LLM (client)
answers = await sample(questions)
# 3. Persist baseline
# 1. Ask the server's internal LLM to generate a questionnaire
questions = genratequestionnaire(model, arguments["model_capabilities"]) # Server-side trusted LLM
answers = []
for q in questions:
a = await sample([q])
answers.append(a)
# 3. Save Q/A pair
with open(get_baseline_path(model), "w") as f:
json.dump({
"questions": [m.content.text for m in questions],
"answers": [m.content.text for m in answers]
}, f, indent=2)
return [types.TextContent(type="text", text=f"βœ… Baseline stored for model: {model}")]
async def check_drift(arguments: Dict[str, Any]) -> List[types.TextContent]:
model = arguments["model"]
base_path = get_baseline_path(model)
# Ensure baseline exists
if not os.path.exists(base_path):
return [types.TextContent(type="text", text=f"❌ No baseline for model: {model}")]
# Load questions + old answers
with open(base_path) as f:
data = json.load(f)
questions = [
types.SamplingMessage(role="user", content=types.TextContent(type="text", text=q))
for q in data["questions"]
]
old_answers = data["answers"]
# 1. Get fresh answers
new_msgs = await sample(questions)
new_answers = [m.content.text for m in new_msgs]
# 1. Ask the model again
new_answers_msgs = []
for q in questions:
a = await sample([q])
new_answers_msgs.append(a)
new_answers = [m.content.text for m in new_answers_msgs]
# 2. Grade for drift
grading = await gradeanswers(old_answers, new_answers)
drift_score = grading[0].content.text.strip()
# 3. Save latest
grading_response = gradeanswers(old_answers, new_answers)
drift_score = grading_response[0].content.text.strip()
# 3. Save the response
with open(get_response_path(model), "w") as f:
json.dump({
"new_answers": new_answers,
"drift_score": drift_score
}, f, indent=2)
# 4. Alert threshold
try:
score_val = float(drift_score)
alert = "🚨 Significant drift!" if score_val > 50 else "βœ… Drift OK"
except ValueError:
alert = "⚠️ Drift score not numeric"
return [
types.TextContent(type="text", text=f"Drift score for {model}: {drift_score}"),
types.TextContent(type="text", text=alert)
]
# === Dispatcher ===
@app.call_tool()
async def dispatch_tool(name: str, arguments: Dict[str, Any] | None = None):
if name == "run_initial_diagnostics":
return await run_initial_diagnostics(arguments or {})
if name == "check_drift":
return await check_drift(arguments or {})
if name == "get_all_models":
return await get_all_models_handler()
if name == "search_models":
return await search_models_handler(arguments or {})
raise ValueError(f"Unknown tool: {name}")
# === Entrypoint ===
async def main():
async with stdio_server() as (reader, writer):
await app.run(reader, writer, app.create_initialization_options())
if __name__ == "__main__":
asyncio.run(main())