Bordoglor's picture
Update app.py
cdd10be verified
raw
history blame
5.55 kB
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import torch
from rembg import remove
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
model,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
lora_scale,
num_inference_steps,
remove_background,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
if model == "Ramzes":
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="unet")
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="text_encoder")
pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
else:
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
pipe = pipe.to(device)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
if remove_background:
image = remove(image)
return image, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
model = gr.Dropdown(
choices=["stabilityai/sdxl-turbo", "CompVis/stable-diffusion-v1-4", "stable-diffusion-v1-5/stable-diffusion-v1-5", "Ramzes"],
value=model_repo_id,
label="Model",
info="Choose which diffusion model to use"
)
with gr.Row():
remove_background = gr.Checkbox(
label="Delete background?", value=True
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.9
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=3, # Replace with defaults that work for your model
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
lora_scale,
num_inference_steps,
remove_background
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()