File size: 23,480 Bytes
1ae5c89
4f8f533
1ae5c89
4f8f533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae5c89
73073f0
1ae5c89
 
140e907
4f8f533
 
 
ad6722d
0cfee79
f6dc317
393fc4f
ad6722d
32e9385
 
 
 
 
 
 
 
 
393fc4f
32e9385
393fc4f
 
32e9385
 
 
4f8f533
 
 
ad6722d
 
 
 
393fc4f
140e907
ad6722d
 
32e9385
6447e6c
32e9385
 
4f8f533
 
 
 
32e9385
393fc4f
140e907
4f8f533
140e907
 
32e9385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4665fb
32e9385
393fc4f
140e907
4f8f533
140e907
32e9385
 
 
1ae5c89
140e907
32e9385
 
 
 
 
140e907
73073f0
32e9385
73073f0
32e9385
 
 
 
140e907
73073f0
32e9385
 
140e907
393fc4f
 
140e907
32e9385
393fc4f
73073f0
393fc4f
 
 
 
32e9385
393fc4f
73073f0
32e9385
140e907
 
 
393fc4f
140e907
393fc4f
 
 
140e907
32e9385
 
393fc4f
140e907
4f8f533
140e907
 
 
4f8f533
 
140e907
 
4f8f533
 
 
140e907
 
4f8f533
 
 
 
 
 
 
 
140e907
4f8f533
140e907
4f8f533
 
140e907
4f8f533
140e907
 
393fc4f
 
 
 
6447e6c
32e9385
393fc4f
 
140e907
4f8f533
140e907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f8f533
140e907
 
4f8f533
 
140e907
4f8f533
 
140e907
 
 
4f8f533
 
 
 
140e907
 
4f8f533
140e907
393fc4f
 
 
32e9385
 
140e907
32e9385
140e907
 
393fc4f
 
140e907
393fc4f
4f8f533
140e907
 
 
4f8f533
140e907
 
4f8f533
140e907
 
 
 
4f8f533
140e907
 
 
 
 
 
 
 
 
 
 
 
73073f0
140e907
4f8f533
73073f0
140e907
73073f0
 
4f8f533
73073f0
 
140e907
4f8f533
140e907
 
 
 
 
 
 
4f8f533
140e907
f4665fb
44c607c
73073f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae5c89
73073f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae5c89
73073f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f8f533
 
73073f0
 
 
 
f4665fb
73073f0
 
 
f4665fb
140e907
73073f0
140e907
73073f0
 
 
140e907
73073f0
556a825
140e907
f4665fb
 
73073f0
4f8f533
73073f0
e797c87
f4665fb
 
4f8f533
 
f4665fb
 
2b355b6
f4665fb
73073f0
4f8f533
73073f0
140e907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4665fb
140e907
 
 
 
1ae5c89
140e907
 
 
 
 
 
 
 
 
 
 
393fc4f
32e9385
73073f0
 
 
4f8f533
 
 
 
 
 
 
 
1ae5c89
f4665fb
140e907
 
 
 
 
 
 
 
 
 
4f8f533
140e907
4f8f533
 
f4665fb
393fc4f
140e907
4f8f533
140e907
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
# =============================================================
# 0️⃣  FORCE ALL CACHES TO EPHEMERAL /tmp  (DO NOT COUNT TO 150 GB)
# =============================================================
import os, shutil, pathlib
# -----------------------------------------------------------------
#  Clean any leftover cache that may already be on the persistent volume.
#  This runs **once** at container start, before any import that touches HF.
# -----------------------------------------------------------------
for p in [
    pathlib.Path.home() / ".cache",
    pathlib.Path("/workspace") / ".cache",
    pathlib.Path("/tmp") / "hf_cache",
    pathlib.Path("/tmp") / "torch_home",
]:
    if p.exists():
        shutil.rmtree(p, ignore_errors=True)

# -----------------------------------------------------------------
#  Point every HF / torch cache to /tmp (which is a RAM‑disk and is
#  NOT counted against the Space’s disk quota).
# -----------------------------------------------------------------
os.environ["HF_HUB_CACHE"]       = "/tmp/hf_cache"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
os.environ["HF_DATASETS_CACHE"]  = "/tmp/hf_cache"
os.environ["TORCH_HOME"]         = "/tmp/torch_home"

# =============================================================
# 1️⃣  IMPORTS
# =============================================================
import spaces
import torch
import numpy as np
import random
import gc
import tempfile
import requests
import logging
from PIL import Image

import gradio as gr
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video

from torchao.quantization import quantize_, Int8WeightOnlyConfig, Float8DynamicActivationFloat8WeightConfig
import aoti

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# =============================================================
# 2️⃣  CONFIG
# =============================================================
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 80

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = (
    "colorful tones, overexposed, static, unclear details, subtitles, style, artwork, painting, screen, "
    "still, overall gray, worst quality, low quality, JPEG compression artifacts, ugly, deformed, "
    "extra fingers, poorly drawn hands, poorly drawn face, deformed, mutated, deformed limbs, "
    "fused fingers, still screen, messy background, three legs, many people in background, walking backwards"
)

# ------------------------------------------------------------
# 3️⃣  TRANSLATOR (Albanian → English) – unchanged
# ------------------------------------------------------------
def translate_albanian_to_english(text: str) -> str:
    if not text.strip():
        return text
    for attempt in range(2):
        try:
            response = requests.post(
                "https://hal1993-mdftranslation1234567890abcdef1234567890-fc073a6.hf.space/v1/translate",
                json={"from_language": "sq", "to_language": "en", "input_text": text},
                headers={"accept": "application/json", "Content-Type": "application/json"},
                timeout=8,
            )
            response.raise_for_status()
            translated = response.json().get("translate", text)
            logger.info(f"Translated: {text[:50]}... → {translated[:50]}...")
            return translated.strip() or text
        except Exception as e:
            logger.warning(f"Translation failed (attempt {attempt + 1}): {e}")
            if attempt == 1:
                return text
    return text

# ------------------------------------------------------------
# 4️⃣  MODEL LOADING  (all caches forced to /tmp)
# ------------------------------------------------------------
pipe = WanImageToVideoPipeline.from_pretrained(
    "Wan-AI/Wan2.2-I2V-A14B-Diffusers",
    torch_dtype=torch.bfloat16,
    cache_dir="/tmp/hf_cache",
).to("cuda")

pipe.transformer = WanTransformer3DModel.from_pretrained(
    "cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers",
    subfolder="transformer",
    torch_dtype=torch.bfloat16,
    device_map="cuda",
    cache_dir="/tmp/hf_cache",
)

pipe.transformer_2 = WanTransformer3DModel.from_pretrained(
    "cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers",
    subfolder="transformer_2",
    torch_dtype=torch.bfloat16,
    device_map="cuda",
    cache_dir="/tmp/hf_cache",
)

# ---- LoRA -------------------------------------------------
pipe.load_lora_weights(
    "Kijai/WanVideo_comfy",
    weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
    adapter_name="lightx2v",
)

pipe.load_lora_weights(
    "Kijai/WanVideo_comfy",
    weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
    adapter_name="lightx2v_2",
    load_into_transformer_2=True,
)

pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1.0, 1.0])
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3.0, components=["transformer"])
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1.0, components=["transformer_2"])
pipe.unload_lora_weights()

# ---- Quantisation & AoT ------------------------------------
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())

aoti.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/Wan2", variant="fp8da")
aoti.aoti_blocks_load(pipe.transformer_2, "zerogpu-aoti/Wan2", variant="fp8da")

# ------------------------------------------------------------
# 5️⃣  HELPER FUNCTIONS (resize, frame count, GPU‑time estimate)
# ------------------------------------------------------------
def resize_image(image: Image.Image) -> Image.Image:
    """Resize / crop the input image so the model receives a valid size."""
    w, h = image.size
    if w == h:
        return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)

    aspect = w / h
    MAX_ASPECT = MAX_DIM / MIN_DIM
    MIN_ASPECT = MIN_DIM / MAX_DIM

    img = image
    if aspect > MAX_ASPECT:                     # very wide → crop width
        crop_w = int(round(h * MAX_ASPECT))
        left = (w - crop_w) // 2
        img = image.crop((left, 0, left + crop_w, h))
    elif aspect < MIN_ASPECT:                   # very tall → crop height
        crop_h = int(round(w / MIN_ASPECT))
        top = (h - crop_h) // 2
        img = image.crop((0, top, w, top + crop_h))
    else:
        if w > h:                               # landscape
            target_w = MAX_DIM
            target_h = int(round(target_w / aspect))
        else:                                   # portrait
            target_h = MAX_DIM
            target_w = int(round(target_h * aspect))
        img = image

    final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
    final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
    final_w = max(MIN_DIM, min(MAX_DIM, final_w))
    final_h = max(MIN_DIM, min(MAX_DIM, final_h))

    return img.resize((final_w, final_h), Image.LANCZOS)


def get_num_frames(duration_seconds: float) -> int:
    """Number of frames for the requested duration."""
    return 1 + int(
        np.clip(
            int(round(duration_seconds * FIXED_FPS)),
            MIN_FRAMES_MODEL,
            MAX_FRAMES_MODEL,
        )
    )


def get_duration(
    input_image,
    prompt,
    steps,
    negative_prompt,
    duration_seconds,
    guidance_scale,
    guidance_scale_2,
    seed,
    randomize_seed,
    progress,            # <- required by @spaces.GPU
):
    """
    Rough estimate of the GPU run‑time.
    The @spaces.GPU decorator will cut the job at 30 s.
    """
    BASE = 81 * 832 * 624          # reference size used by the original demo
    BASE_STEP = 15

    w, h = resize_image(input_image).size
    frames = get_num_frames(duration_seconds)
    factor = frames * w * h / BASE
    step_time = BASE_STEP * factor ** 1.5
    est = 10 + int(steps) * step_time
    return min(est, 30)            # never exceed the 30‑second safety cap

# ------------------------------------------------------------
# 6️⃣  GENERATION FUNCTION
# ------------------------------------------------------------
@spaces.GPU(duration=get_duration)
def generate_video(
    input_image,
    prompt_input,
    steps=6,
    negative_prompt=default_negative_prompt,
    duration_seconds=3.2,
    guidance_scale=1.5,
    guidance_scale_2=1.5,
    seed=42,
    randomize_seed=False,
    progress=gr.Progress(track_tqdm=True),
):
    """Run the model → return a temporary MP4 path and the seed used."""
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    # ---- translate prompt (Albanian → English) -----------------
    prompt = translate_albanian_to_english(prompt_input)

    # ---- prepare inputs ----------------------------------------
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized = resize_image(input_image)
    num_frames = get_num_frames(duration_seconds)

    # ---- model inference ----------------------------------------
    out = pipe(
        image=resized,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=resized.height,
        width=resized.width,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=int(steps),
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
    )
    frames = out.frames[0]

    # ---- write a temporary MP4 (still inside /tmp) -------------
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
        video_path = tmp.name
    export_to_video(frames, video_path, fps=FIXED_FPS)

    # ---- unload AoT blocks (they occupy a few GB on disk) -----
    aoti.aoti_blocks_unload(pipe.transformer)
    aoti.aoti_blocks_unload(pipe.transformer_2)

    # ---- GPU cleanup -------------------------------------------
    gc.collect()
    torch.cuda.empty_cache()

    return video_path, current_seed


# ------------------------------------------------------------
# 7️⃣  UI – 100 % identical visual appearance to the original demo
# ------------------------------------------------------------
with gr.Blocks(
    css="""
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;600;700&display=swap');
@keyframes glow {0%{box-shadow:0 0 14px rgba(0,255,128,0.5);}50%{box-shadow:0 0 14px rgba(0,255,128,0.7);}100%{box-shadow:0 0 14px rgba(0,255,128,0.5);}}
@keyframes glow-hover {0%{box-shadow:0 0 20px rgba(0,255,128,0.7);}50%{box-shadow:0 0 20px rgba(0,255,128,0.9);}100%{box-shadow:0 0 20px rgba(0,255,128,0.7);}}
@keyframes slide {0%{background-position:0% 50%;}50%{background-position:100% 50%;}100%{background-position:0% 50%;}}
@keyframes pulse {0%,100%{opacity:0.7;}50%{opacity:1;}}
body{
    background:#000 !important;
    color:#FFF !important;
    font-family:'Orbitron',sans-serif;
    min-height:100vh;
    margin:0 !important;
    padding:0 !important;
    overflow-x:hidden !important;
    display:flex !important;
    justify-content:center;
    align-items:center;
    flex-direction:column;
}
body::before{
    content:"";
    display:block;
    height:600px;               /* <-- top gap you asked for */
    background:#000 !important;
}
.gr-blocks,.container{
    width:100% !important;
    max-width:100vw !important;
    margin:0 !important;
    padding:0 !important;
    box-sizing:border-box !important;
    overflow-x:hidden !important;
    background:#000 !important;
    color:#FFF !important;
}
#general_items{
    width:100% !important;
    max-width:100vw !important;
    margin:2rem 0 !important;
    display:flex !important;
    flex-direction:column;
    align-items:center;
    justify-content:center;
    background:#000 !important;
    color:#FFF !important;
}
#input_column{
    background:#000 !important;
    border:none !important;
    border-radius:8px;
    padding:1rem !important;
    box-shadow:0 0 10px rgba(255,255,255,0.3) !important;
    width:100% !important;
    max-width:100vw !important;
    box-sizing:border-box !important;
    color:#FFF !important;
}
h1{
    font-size:5rem;
    font-weight:700;
    text-align:center;
    color:#FFF !important;
    text-shadow:0 0 8px rgba(255,255,255,0.3) !important;
    margin:0 auto .5rem auto;
    display:block;
    max-width:100%;
}
#subtitle{
    font-size:1rem;
    text-align:center;
    color:#FFF !important;
    opacity:0.8;
    margin-bottom:1rem;
    display:block;
    max-width:100%;
}
.gradio-component{
    background:#000 !important;
    border:none;
    margin:.75rem 0;
    width:100% !important;
    max-width:100vw !important;
    color:#FFF !important;
}
.image-container{
    aspect-ratio:1/1;
    width:100% !important;
    max-width:100vw !important;
    min-height:500px;
    height:auto;
    border:0.5px solid #FFF !important;
    border-radius:4px;
    box-sizing:border-box !important;
    background:#000 !important;
    box-shadow:0 0 10px rgba(255,255,255,0.3) !important;
    position:relative;
    color:#FFF !important;
    overflow:hidden !important;
}
.image-container img,.image-container video{
    width:100% !important;
    height:auto;
    box-sizing:border-box !important;
    display:block !important;
}
/* Hide all Gradio progress UI */
.image-container[aria-label="Generated Video"] .progress-text,
.image-container[aria-label="Generated Video"] .gr-progress,
.image-container[aria-label="Generated Video"] .gr-progress-bar,
.image-container[aria-label="Generated Video"] .progress-bar,
.image-container[aria-label="Generated Video"] [data-testid="progress"],
.image-container[aria-label="Generated Video"] .status,
.image-container[aria-label="Generated Video"] .loading,
.image-container[aria-label="Generated Video"] .spinner,
.image-container[aria-label="Generated Video"] .gr-spinner,
.image-container[aria-label="Generated Video"] .gr-loading,
.image-container[aria-label="Generated Video"] .gr-status,
.image-container[aria-label="Generated Video"] .gpu-init,
.image-container[aria-label="Generated Video"] .initializing,
.image-container[aria-label="Generated Video"] .queue,
.image-container[aria-label="Generated Video"] .queued,
.image-container[aria-label="Generated Video"] .waiting,
.image-container[aria-label="Generated Video"] .processing,
.image-container[aria-label="Generated Video"] .gradio-progress,
.image-container[aria-label="Generated Video"] .gradio-status,
.image-container[aria-label="Generated Video"] div[class*="progress"],
.image-container[aria-label="Generated Video"] div[class*="loading"],
.image-container[aria-label="Generated Video"] div[class*="status"],
.image-container[aria-label="Generated Video"] div[class*="spinner"],
.image-container[aria-label="Generated Video"] *[class*="progress"],
.image-container[aria-label="Generated Video"] *[class*="loading"],
.image-container[aria-label="Generated Video"] *[class*="status"],
.image-container[aria-label="Generated Video"] *[class*="spinner"],
.progress-text,.gr-progress,.gr-progress-bar,.progress-bar,
[data-testid="progress"],.status,.loading,.spinner,.gr-spinner,
.gr-loading,.gr-status,.gpu-init,.initializing,.queue,
.queued,.waiting,.processing,.gradio-progress,.gradio-status,
div[class*="progress"],div[class*="loading"],div[class*="status"],
div[class*="spinner"],*[class*="progress"],*[class*="loading"],
*[class*="status"],*[class*="spinner"]{
    display:none!important;
    visibility:hidden!important;
    opacity:0!important;
    height:0!important;
    width:0!important;
    font-size:0!important;
    line-height:0!important;
    padding:0!important;
    margin:0!important;
    position:absolute!important;
    left:-9999px!important;
    top:-9999px!important;
    z-index:-9999!important;
    pointer-events:none!important;
    overflow:hidden!important;
}
/* Toolbar hiding */
.image-container[aria-label="Input Image"] .file-upload,
.image-container[aria-label="Input Image"] .file-preview,
.image-container[aria-label="Input Image"] .image-actions,
.image-container[aria-label="Generated Video"] .file-upload,
.image-container[aria-label="Generated Video"] .file-preview,
.image-container[aria-label="Generated Video"] .image-actions{
    display:none!important;
}
.image-container[aria-label="Generated Video"].processing{
    background:#000!important;
    position:relative;
}
.image-container[aria-label="Generated Video"].processing::before{
    content:"PROCESSING...";
    position:absolute!important;
    top:50%!important;
    left:50%!important;
    transform:translate(-50%,-50%)!important;
    color:#FFF;
    font-family:'Orbitron',sans-serif;
    font-size:1.8rem!important;
    font-weight:700!important;
    text-align:center;
    text-shadow:0 0 10px rgba(0,255,128,0.8)!important;
    animation:pulse 1.5s ease-in-out infinite,glow 2s ease-in-out infinite!important;
    z-index:9999!important;
    width:100%!important;
    height:100%!important;
    display:flex!important;
    align-items:center!important;
    justify-content:center!important;
    pointer-events:none!important;
    background:#000!important;
    border-radius:4px!important;
    box-sizing:border-box!important;
}
.image-container[aria-label="Generated Video"].processing *{
    display:none!important;
}
input,textarea,.gr-dropdown,.gr-dropdown select{
    background:#000!important;
    color:#FFF!important;
    border:1px solid #FFF!important;
    border-radius:4px;
    padding:.5rem;
    width:100%!important;
    max-width:100vw!important;
    box-sizing:border-box!important;
}
.gr-button-primary{
    background:linear-gradient(90deg,rgba(0,255,128,0.3),rgba(0,200,100,0.3),rgba(0,255,128,0.3))!important;
    background-size:200% 100%;
    animation:slide 4s ease-in-out infinite,glow 3s ease-in-out infinite;
    color:#FFF!important;
    border:1px solid #FFF!important;
    border-radius:6px;
    padding:.75rem 1.5rem;
    font-size:1.1rem;
    font-weight:600;
    box-shadow:0 0 14px rgba(0,255,128,0.7)!important;
    transition:box-shadow .3s,transform .3s;
    width:100%!important;
    max-width:100vw!important;
    min-height:48px;
    cursor:pointer;
}
.gr-button-primary:hover{
    box-shadow:0 0 20px rgba(0,255,128,0.9)!important;
    animation:slide 4s ease-in-out infinite,glow-hover 3s ease-in-out infinite;
    transform:scale(1.05);
}
button[aria-label="Fullscreen"],button[aria-label="Share"]{
    display:none!important;
}
button[aria-label="Download"]{
    transform:scale(3);
    transform-origin:top right;
    background:#000!important;
    color:#FFF!important;
    border:1px solid #FFF!important;
    border-radius:4px;
    padding:.4rem!important;
    margin:.5rem!important;
    box-shadow:0 0 8px rgba(255,255,255,0.3)!important;
    transition:box-shadow .3s;
}
button[aria-label="Download"]:hover{
    box-shadow:0 0 12px rgba(255,255,255,0.5)!important;
}
footer,.gr-button-secondary{
    display:none!important;
}
.gr-group{
    background:#000!important;
    border:none!important;
    width:100% !important;
    max-width:100vw !important;
}
@media (max-width:768px){
    h1{font-size:4rem;}
    #subtitle{font-size:.9rem;}
    .gr-button-primary{
        padding:.6rem 1rem;
        font-size:1rem;
        box-shadow:0 0 10px rgba(0,255,128,0.7)!important;
    }
    .gr-button-primary:hover{
        box-shadow:0 0 12px rgba(0,255,128,0.9)!important;
    }
    .image-container{min-height:300px;}
    .image-container[aria-label="Generated Video"].processing::before{
        font-size:1.2rem!important;
    }
}
""",
    title="Fast Image to Video"
) as demo:

    # -------------------------------------------------
    # 500‑ERROR GUARD – exact same unique path string
    # -------------------------------------------------
    gr.HTML("""
    <script>
    if (!window.location.pathname.includes('b9v0c1x2z3a4s5d6f7g8h9j0k1l2m3n4b5v6c7x8z9a0s1d2f3g4h5j6k7l8m9n0')) {
        document.body.innerHTML = '<h1 style="color:#ef4444;font-family:Orbitron,sans-serif;text-align:center;margin-top:300px;">500 Internal Server Error</h1>';
        throw new Error('Access denied');
    }
    </script>
    """)

    # -------------------------------------------------
    # UI layout – identical visual hierarchy
    # -------------------------------------------------
    with gr.Row(elem_id="general_items"):
        gr.Markdown("# ")
        gr.Markdown(
            "Convert an image into an animated video with prompt description.",
            elem_id="subtitle",
        )
        with gr.Column(elem_id="input_column"):
            input_image = gr.Image(
                type="pil",
                label="Input Image",
                sources=["upload"],
                show_download_button=False,
                show_share_button=False,
                interactive=True,
                elem_classes=["gradio-component", "image-container"],
            )
            prompt = gr.Textbox(
                label="Prompt",
                value=default_prompt_i2v,
                lines=3,
                placeholder="Describe the desired animation or motion",
                elem_classes=["gradio-component"],
            )
            generate_btn = gr.Button(
                "Generate Video",
                variant="primary",
                elem_classes=["gradio-component", "gr-button-primary"],
            )
            output_video = gr.Video(
                label="Generated Video",
                autoplay=True,
                interactive=False,
                show_download_button=True,
                show_share_button=False,
                elem_classes=["gradio-component", "image-container"],
            )

    # -------------------------------------------------
    # Wiring – order must match generate_video signature
    # -------------------------------------------------
    def _postprocess(video_path, seed):
        """Delete the temporary file *after* Gradio has streamed it."""
        try:
            os.remove(video_path)
        except OSError:
            pass
        return video_path, seed

    generate_btn.click(
        fn=generate_video,
        inputs=[
            input_image,
            prompt,
            gr.State(value=6),                     # steps
            gr.State(value=default_negative_prompt),  # negative_prompt
            gr.State(value=3.2),                    # duration_seconds
            gr.State(value=1.5),                    # guidance_scale
            gr.State(value=1.5),                    # guidance_scale_2
            gr.State(value=42),                     # seed
            gr.State(value=True),                   # randomize_seed
            # progress is injected by @spaces.GPU – do NOT pass it here
        ],
        outputs=[output_video, gr.State(value=42)],
        postprocess=_postprocess,   # <-- guarantees the MP4 is removed
    )

# ------------------------------------------------------------
# 8️⃣  MAIN
# ------------------------------------------------------------
if __name__ == "__main__":
    demo.queue().launch(share=True)