Spaces:
Runtime error
Runtime error
| # Smart Parking System - Hugging Face Spaces Version | |
| # Run this in Hugging Face Spaces | |
| !pip install -q torch torchvision transformers pillow matplotlib numpy opencv-python-headless timm einops gradio | |
| !pip install -q git+https://github.com/facebookresearch/segment-anything-2.git | |
| !pip install -q ultralytics supervision | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import matplotlib.patches as patches | |
| from datetime import datetime, timedelta | |
| import cv2 | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| import gradio as gr | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| class StateOfTheArtParkingDetector: | |
| def __init__(self, total_spaces=50): | |
| self.total_spaces = total_spaces | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"π Loading Models... Device: {self.device}") | |
| # Try Florence-2 (optional, can skip if CPU) | |
| self.florence_available = False | |
| try: | |
| self.processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| "microsoft/Florence-2-base", | |
| torch_dtype=torch.float16 if self.device=="cuda" else torch.float32, | |
| trust_remote_code=True | |
| ).to(self.device) | |
| self.florence_available = True | |
| print("β Florence-2 loaded") | |
| except: | |
| print("β οΈ Florence-2 unavailable, skipping") | |
| # YOLO-World | |
| try: | |
| from ultralytics import YOLO | |
| self.yolo_world = YOLO('yolov8x-worldv2.pt') | |
| self.yolo_world_available = True | |
| print("β YOLO-World loaded") | |
| except Exception as e: | |
| print(f"β οΈ YOLO-World unavailable: {e}") | |
| self.yolo_world_available = False | |
| # Florence detection | |
| def detect_with_florence(self, image): | |
| if not self.florence_available: | |
| return [] | |
| # Minimal placeholder to avoid crash | |
| return [] | |
| # YOLO-World detection | |
| def detect_with_yolo_world(self, image): | |
| if not self.yolo_world_available: | |
| return [] | |
| self.yolo_world.set_classes([ | |
| "car", "vehicle", "automobile", "truck", "van", | |
| "SUV", "sedan", "parked car", "parking space with car" | |
| ]) | |
| img_array = np.array(image) | |
| results = self.yolo_world(img_array, conf=0.15, iou=0.3, verbose=False) | |
| detections = [] | |
| for result in results: | |
| boxes = result.boxes | |
| for box in boxes: | |
| x1, y1, x2, y2 = box.xyxy[0].cpu().numpy() | |
| conf = float(box.conf[0]) | |
| detections.append({'box':[int(x1), int(y1), int(x2), int(y2)], | |
| 'label':'car', 'score':conf, 'method':'yolo-world'}) | |
| return detections | |
| # Simple CV detection fallback | |
| def advanced_cv_detection(self, image): | |
| img_array = np.array(image) | |
| gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY) | |
| edges = cv2.Canny(gray, 30, 100) | |
| kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,7)) | |
| closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel, iterations=2) | |
| contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| h, w = gray.shape | |
| min_area, max_area = (h*w)//600, (h*w)//20 | |
| detections = [] | |
| for contour in contours: | |
| area = cv2.contourArea(contour) | |
| if min_area < area < max_area: | |
| x, y, cw, ch = cv2.boundingRect(contour) | |
| aspect_ratio = cw/ch if ch>0 else 0 | |
| if 0.4<aspect_ratio<3.5: | |
| hull = cv2.convexHull(contour) | |
| hull_area = cv2.contourArea(hull) | |
| solidity = area/hull_area if hull_area>0 else 0 | |
| if solidity > 0.4: | |
| detections.append({'box':[x, y, x+cw, y+ch], 'label':'car', 'score':0.7, 'method':'cv'}) | |
| return detections | |
| # Merge detections (NMS) | |
| def merge_all_detections(self, all_detections): | |
| if len(all_detections)==0: return [] | |
| normalized = [] | |
| for det in all_detections: | |
| x1, y1, x2, y2 = det['box'] | |
| normalized.append({'box':[x1,y1,x2,y2], 'score':det['score'], 'method':det.get('method','unknown')}) | |
| normalized.sort(key=lambda x: x['score'], reverse=True) | |
| keep=[] | |
| while normalized: | |
| best = normalized.pop(0) | |
| keep.append(best) | |
| normalized = [d for d in normalized if self.calculate_iou(best['box'], d['box'])<0.5] | |
| return keep | |
| def calculate_iou(self, box1, box2): | |
| x1_1, y1_1, x2_1, y2_1 = box1 | |
| x1_2, y1_2, x2_2, y2_2 = box2 | |
| x1_i, y1_i = max(x1_1,x1_2), max(y1_1,y1_2) | |
| x2_i, y2_i = min(x2_1,x2_2), min(y2_1,y2_2) | |
| if x2_i<x1_i or y2_i<y1_i: return 0.0 | |
| inter = (x2_i-x1_i)*(y2_i-y1_i) | |
| area1 = (x2_1-x1_1)*(y2_1-y1_1) | |
| area2 = (x2_2-x1_2)*(y2_2-y1_2) | |
| union = area1+area2-inter | |
| return inter/union if union>0 else 0 | |
| def create_annotated_image(self, image, detections): | |
| img_array = np.array(image) | |
| fig, ax = plt.subplots(1, figsize=(12,8)) | |
| ax.imshow(img_array) | |
| for i, det in enumerate(detections, 1): | |
| x1, y1, x2, y2 = det['box'] | |
| rect = patches.Rectangle((x1,y1,x2-x1,y2-y1), linewidth=3, edgecolor='#00ff00', facecolor='none') | |
| ax.add_patch(rect) | |
| ax.text(x1+(x2-x1)/2, y1+(y2-y1)/2, f"{i}", | |
| bbox=dict(facecolor='#00ff00', alpha=0.9, boxstyle='circle,pad=0.3'), | |
| fontsize=12, color='black', weight='bold', ha='center', va='center') | |
| ax.axis('off') | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| img_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
| img_plot = img_plot.reshape(fig.canvas.get_width_height()[::-1]+(3,)) | |
| plt.close(fig) | |
| return Image.fromarray(img_plot) | |
| # --- Main function for Gradio --- | |
| def process_image(self, image, total_spaces): | |
| if image is None: return None, "Upload an image", "" | |
| self.total_spaces = total_spaces | |
| if isinstance(image, np.ndarray): image = Image.fromarray(image) | |
| all_dets=[] | |
| all_dets.extend(self.detect_with_florence(image)) | |
| all_dets.extend(self.detect_with_yolo_world(image)) | |
| all_dets.extend(self.advanced_cv_detection(image)) | |
| final_dets = self.merge_all_detections(all_dets) | |
| count = len(final_dets) | |
| annotated_img = self.create_annotated_image(image, final_dets) | |
| occupancy_rate = min((count/total_spaces)*100, 100) | |
| available = max(total_spaces-count,0) | |
| status = "π’ AVAILABLE" if occupancy_rate<50 else "π‘ BUSY" if occupancy_rate<70 else "π CRITICAL" if occupancy_rate<90 else "π΄ FULL" | |
| pred_time = (datetime.now()+timedelta(hours=available/5)).strftime('%I:%M %p') | |
| status_html = f"<h2 style='color:green'>{status}</h2>" | |
| stats_text = f"Total Vehicles: {count}\nAvailable: {available}\nOccupancy: {occupancy_rate:.1f}%" | |
| return annotated_img, status_html, stats_text | |
| # --- Initialize Detector --- | |
| detector = StateOfTheArtParkingDetector() | |
| # --- Gradio Interface --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## π ΏοΈ Smart Parking Management System") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Parking Lot Image", type="pil") | |
| total_spaces_slider = gr.Slider(10, 200, value=50, step=5, label="Total Spaces") | |
| analyze_btn = gr.Button("Analyze Parking Lot") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Detected Vehicles", type="pil") | |
| status_html = gr.HTML(label="Parking Status") | |
| stats_output = gr.Textbox(label="Detailed Stats", lines=10) | |
| analyze_btn.click(fn=detector.process_image, inputs=[input_image,total_spaces_slider], outputs=[output_image,status_html,stats_output]) | |
| demo.launch() | |