Spaces:
Running
Running
Jordan Klein
commited on
Commit
Β·
ceda798
1
Parent(s):
32aff05
updated description
Browse files
app.py
CHANGED
|
@@ -32,7 +32,6 @@ def download_file(url, dest_path):
|
|
| 32 |
f.write(r.content)
|
| 33 |
print(f"Saved to {dest_path}")
|
| 34 |
|
| 35 |
-
|
| 36 |
# Download index + docstore
|
| 37 |
download_file(INDEX_URL, os.path.join(INDEX_DIR, "index.faiss"))
|
| 38 |
download_file(DOCSTORE_URL, os.path.join(INDEX_DIR, "docstore.pkl"))
|
|
@@ -41,12 +40,7 @@ download_file(DOCSTORE_URL, os.path.join(INDEX_DIR, "docstore.pkl"))
|
|
| 41 |
# Retriever
|
| 42 |
# ------------------------------
|
| 43 |
class Retriever:
|
| 44 |
-
|
| 45 |
-
def __init__(
|
| 46 |
-
self,
|
| 47 |
-
index_dir,
|
| 48 |
-
cross_encoder_model="cross-encoder/ms-marco-MiniLM-L-6-v2"
|
| 49 |
-
):
|
| 50 |
index, segments = self._load_index(index_dir)
|
| 51 |
self.index = index
|
| 52 |
self.segments = segments
|
|
@@ -59,7 +53,7 @@ class Retriever:
|
|
| 59 |
|
| 60 |
def _load_index(self, index_dir):
|
| 61 |
index = faiss.read_index(os.path.join(index_dir, "index.faiss"))
|
| 62 |
-
with open(os.path.join(index_dir, "docstore.pkl")
|
| 63 |
segments = pickle.load(f)
|
| 64 |
return index, segments
|
| 65 |
|
|
@@ -68,29 +62,20 @@ class Retriever:
|
|
| 68 |
faiss.normalize_L2(embedding)
|
| 69 |
return embedding
|
| 70 |
|
| 71 |
-
def _cosine_similarity(self, a, b):
|
| 72 |
-
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
| 73 |
-
|
| 74 |
def retrieve(self, query, k=50):
|
| 75 |
-
|
| 76 |
-
1. Retrieve top-k segments using bi-encoder (FAISS)
|
| 77 |
-
2. Re-rank segments using cross-encoder on segment['text']
|
| 78 |
-
3. Re-score each sentence inside chosen segment using cross-encoder
|
| 79 |
-
4. Highlight the best sentence
|
| 80 |
-
"""
|
| 81 |
-
# ---------- Stage 1: Bi-Encoder Retrieval ----------
|
| 82 |
embedding = self.preprocess_query(query)
|
| 83 |
D, I = self.index.search(embedding, k)
|
| 84 |
|
| 85 |
candidates = []
|
| 86 |
-
ce_pairs_segments = []
|
| 87 |
|
| 88 |
for idx in I[0]:
|
| 89 |
seg = self.segments[idx]
|
| 90 |
candidates.append(seg)
|
| 91 |
ce_pairs_segments.append([query, seg["text"]])
|
| 92 |
|
| 93 |
-
# ---------- Stage 2: Cross-Encoder Re-Rank
|
| 94 |
segment_scores = self.cross.predict(ce_pairs_segments)
|
| 95 |
best_seg_idx = int(np.argmax(segment_scores))
|
| 96 |
best_segment = candidates[best_seg_idx]
|
|
@@ -98,21 +83,18 @@ class Retriever:
|
|
| 98 |
# ---------- Stage 3: Cross-Encoder Sentence Ranking ----------
|
| 99 |
sentences = best_segment["sentences"]
|
| 100 |
ce_pairs_sentences = [[query, s] for s in sentences]
|
| 101 |
-
|
| 102 |
sentence_scores = self.cross.predict(ce_pairs_sentences)
|
| 103 |
-
best_sent_idx = int(np.argmax(sentence_scores))
|
| 104 |
|
|
|
|
| 105 |
best_sentence = sentences[best_sent_idx].strip()
|
| 106 |
|
| 107 |
-
# Highlight within full segment
|
| 108 |
highlighted_text = (
|
| 109 |
best_segment["text"]
|
| 110 |
.replace(best_sentence, f"**{best_sentence}**")
|
| 111 |
.replace("\n", " ")
|
| 112 |
)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
result = {
|
| 116 |
"text": highlighted_text,
|
| 117 |
"url": best_segment.get("url"),
|
| 118 |
"document_id": best_segment.get("document_id"),
|
|
@@ -120,46 +102,51 @@ class Retriever:
|
|
| 120 |
"sentence_score": float(sentence_scores[best_sent_idx]),
|
| 121 |
}
|
| 122 |
|
| 123 |
-
return result
|
| 124 |
-
|
| 125 |
-
|
| 126 |
# ------------------------------
|
| 127 |
-
#
|
| 128 |
# ------------------------------
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
| 137 |
|
| 138 |
# ------------------------------
|
| 139 |
# Combined function: retrieve β generate
|
| 140 |
# ------------------------------
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
def answer_query(query):
|
| 144 |
doc = retriever.retrieve(query)
|
| 145 |
|
| 146 |
url = doc["url"]
|
| 147 |
context = doc["text"].replace("\n", " ")
|
| 148 |
|
| 149 |
prompt = f"""
|
| 150 |
-
<|system|>
|
| 151 |
You answer questions strictly using the provided context.
|
| 152 |
-
|
| 153 |
Context: {context}
|
| 154 |
|
| 155 |
Question: {query}
|
| 156 |
-
<|assistant|>
|
| 157 |
"""
|
| 158 |
|
| 159 |
-
|
|
|
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
return (
|
| 165 |
f"#### Response\n\n"
|
|
@@ -176,12 +163,26 @@ def answer_query(query):
|
|
| 176 |
# ------------------------------
|
| 177 |
demo = gr.Interface(
|
| 178 |
fn=answer_query,
|
| 179 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
outputs=gr.Markdown(label="Answer"),
|
| 181 |
title="Abalone RAG Demo",
|
| 182 |
-
description="This RAG system uses SBERT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
)
|
| 184 |
|
| 185 |
if __name__ == "__main__":
|
| 186 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
| 187 |
-
|
|
|
|
| 32 |
f.write(r.content)
|
| 33 |
print(f"Saved to {dest_path}")
|
| 34 |
|
|
|
|
| 35 |
# Download index + docstore
|
| 36 |
download_file(INDEX_URL, os.path.join(INDEX_DIR, "index.faiss"))
|
| 37 |
download_file(DOCSTORE_URL, os.path.join(INDEX_DIR, "docstore.pkl"))
|
|
|
|
| 40 |
# Retriever
|
| 41 |
# ------------------------------
|
| 42 |
class Retriever:
|
| 43 |
+
def __init__(self, index_dir, cross_encoder_model="cross-encoder/ms-marco-MiniLM-L-6-v2"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
index, segments = self._load_index(index_dir)
|
| 45 |
self.index = index
|
| 46 |
self.segments = segments
|
|
|
|
| 53 |
|
| 54 |
def _load_index(self, index_dir):
|
| 55 |
index = faiss.read_index(os.path.join(index_dir, "index.faiss"))
|
| 56 |
+
with open(os.path.join(index_dir, "docstore.pkl"), "rb") as f:
|
| 57 |
segments = pickle.load(f)
|
| 58 |
return index, segments
|
| 59 |
|
|
|
|
| 62 |
faiss.normalize_L2(embedding)
|
| 63 |
return embedding
|
| 64 |
|
|
|
|
|
|
|
|
|
|
| 65 |
def retrieve(self, query, k=50):
|
| 66 |
+
# ---------- Stage 1: Bi-Encoder ----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
embedding = self.preprocess_query(query)
|
| 68 |
D, I = self.index.search(embedding, k)
|
| 69 |
|
| 70 |
candidates = []
|
| 71 |
+
ce_pairs_segments = []
|
| 72 |
|
| 73 |
for idx in I[0]:
|
| 74 |
seg = self.segments[idx]
|
| 75 |
candidates.append(seg)
|
| 76 |
ce_pairs_segments.append([query, seg["text"]])
|
| 77 |
|
| 78 |
+
# ---------- Stage 2: Cross-Encoder Re-Rank ----------
|
| 79 |
segment_scores = self.cross.predict(ce_pairs_segments)
|
| 80 |
best_seg_idx = int(np.argmax(segment_scores))
|
| 81 |
best_segment = candidates[best_seg_idx]
|
|
|
|
| 83 |
# ---------- Stage 3: Cross-Encoder Sentence Ranking ----------
|
| 84 |
sentences = best_segment["sentences"]
|
| 85 |
ce_pairs_sentences = [[query, s] for s in sentences]
|
|
|
|
| 86 |
sentence_scores = self.cross.predict(ce_pairs_sentences)
|
|
|
|
| 87 |
|
| 88 |
+
best_sent_idx = int(np.argmax(sentence_scores))
|
| 89 |
best_sentence = sentences[best_sent_idx].strip()
|
| 90 |
|
|
|
|
| 91 |
highlighted_text = (
|
| 92 |
best_segment["text"]
|
| 93 |
.replace(best_sentence, f"**{best_sentence}**")
|
| 94 |
.replace("\n", " ")
|
| 95 |
)
|
| 96 |
|
| 97 |
+
return {
|
|
|
|
| 98 |
"text": highlighted_text,
|
| 99 |
"url": best_segment.get("url"),
|
| 100 |
"document_id": best_segment.get("document_id"),
|
|
|
|
| 102 |
"sentence_score": float(sentence_scores[best_sent_idx]),
|
| 103 |
}
|
| 104 |
|
|
|
|
|
|
|
|
|
|
| 105 |
# ------------------------------
|
| 106 |
+
# Generators (loaded once)
|
| 107 |
# ------------------------------
|
| 108 |
+
generators = {
|
| 109 |
+
"TinyLlama": pipeline(
|
| 110 |
+
"text-generation",
|
| 111 |
+
model="LoneWolfgang/tinyllama-for-abalone-RAG",
|
| 112 |
+
max_new_tokens=150,
|
| 113 |
+
temperature=0.1,
|
| 114 |
+
),
|
| 115 |
+
"FLAN-T5": pipeline(
|
| 116 |
+
"text2text-generation",
|
| 117 |
+
model="google/flan-t5-base",
|
| 118 |
+
max_length=200,
|
| 119 |
+
)
|
| 120 |
+
}
|
| 121 |
|
| 122 |
+
retriever = Retriever(INDEX_DIR)
|
| 123 |
|
| 124 |
# ------------------------------
|
| 125 |
# Combined function: retrieve β generate
|
| 126 |
# ------------------------------
|
| 127 |
+
def answer_query(query, model_choice):
|
|
|
|
|
|
|
| 128 |
doc = retriever.retrieve(query)
|
| 129 |
|
| 130 |
url = doc["url"]
|
| 131 |
context = doc["text"].replace("\n", " ")
|
| 132 |
|
| 133 |
prompt = f"""
|
|
|
|
| 134 |
You answer questions strictly using the provided context.
|
| 135 |
+
|
| 136 |
Context: {context}
|
| 137 |
|
| 138 |
Question: {query}
|
|
|
|
| 139 |
"""
|
| 140 |
|
| 141 |
+
# Choose generator
|
| 142 |
+
gen = generators[model_choice]
|
| 143 |
|
| 144 |
+
if model_choice == "TinyLlama":
|
| 145 |
+
out = gen(f"<|system|>{prompt}<|assistant|>")[0]["generated_text"]
|
| 146 |
+
result = out.split("<|assistant|>")[-1].strip()
|
| 147 |
+
else:
|
| 148 |
+
# FLAN-T5 returns text in "generated_text"
|
| 149 |
+
result = gen(prompt)[0]["generated_text"]
|
| 150 |
|
| 151 |
return (
|
| 152 |
f"#### Response\n\n"
|
|
|
|
| 163 |
# ------------------------------
|
| 164 |
demo = gr.Interface(
|
| 165 |
fn=answer_query,
|
| 166 |
+
inputs=[
|
| 167 |
+
gr.Textbox(label="Enter your question"),
|
| 168 |
+
gr.Radio(
|
| 169 |
+
["TinyLlama", "FLAN-T5"],
|
| 170 |
+
label="Choose Model",
|
| 171 |
+
value="FLAN-T5"
|
| 172 |
+
)
|
| 173 |
+
],
|
| 174 |
outputs=gr.Markdown(label="Answer"),
|
| 175 |
title="Abalone RAG Demo",
|
| 176 |
+
description="""This RAG system uses [SBERT](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) for initial retrieval and a [Cross Encoder](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) for re-ranking and highlighting.
|
| 177 |
+
|
| 178 |
+
Sentence embeddings are computed and [indexed](https://huggingface.co/LoneWolfgang/abalone-index) using FAISS.
|
| 179 |
+
|
| 180 |
+
For generation, you can choose between:
|
| 181 |
+
|
| 182 |
+
- [FLAN-T5](https://huggingface.co/google/flan-t5-base) β fast, reliable, and ideal for exploring retrieval quality.
|
| 183 |
+
- [Finetuned TinyLlama](https://huggingface.co/LoneWolfgang/tinyllama-for-abalone-RAG) β slower, but more expressive.
|
| 184 |
+
"""
|
| 185 |
)
|
| 186 |
|
| 187 |
if __name__ == "__main__":
|
| 188 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|